User Tools

Site Tools


dlcp2023:proceedings

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
dlcp2023:proceedings [05/10/2023 22:13] – [Plenary Reports] admindlcp2023:proceedings [18/01/2024 16:16] (current) admin
Line 1: Line 1:
 ====== Proceedings ====== ====== Proceedings ======
 +
 +**//Jan. 18, 2024//**
 +
 +{{:dlcp2023:final-green.png?100|}} \\ 
 +Вышел номер Вестника МГУ с трудами конференции: [[https://link.springer.com/journal/11972/volumes-and-issues/78-1/supplement]]
 +
 +
 +----
  
 The proceedings of the DLCP2023 conference will be published as a special issue of the journal [[http://vmu.phys.msu.ru/recent|Moscow University Physics Bulletin]] in 2023 in both electronic and paper form. The journal is published in English by [[https://www.springer.com/journal/11972|Springer]] and indexed in the databases [[https://www.webofscience.com|WoS]] and [[https://www.scopus.com|Scopus]] and is included in the Russian index [[https://elibrary.ru/projects/rsci/rsci.pdf|RCSI]] too. The proceedings of the DLCP2023 conference will be published as a special issue of the journal [[http://vmu.phys.msu.ru/recent|Moscow University Physics Bulletin]] in 2023 in both electronic and paper form. The journal is published in English by [[https://www.springer.com/journal/11972|Springer]] and indexed in the databases [[https://www.webofscience.com|WoS]] and [[https://www.scopus.com|Scopus]] and is included in the Russian index [[https://elibrary.ru/projects/rsci/rsci.pdf|RCSI]] too.
Line 7: Line 15:
 After blind peer review, all accepted papers will be published in the conference proceedings.  After blind peer review, all accepted papers will be published in the conference proceedings. 
  
-{{:new3.png?48|}}+
 Notification of paper acceptance — <del>September 11, 2023</del> -> <del>September 25, 2023</del> -> <del>September 29, 2023</del>-> **October 05, 2023** Notification of paper acceptance — <del>September 11, 2023</del> -> <del>September 25, 2023</del> -> <del>September 29, 2023</del>-> **October 05, 2023**
  
Line 23: Line 31:
  
 More details can be found at [[http://vmu.phys.msu.ru/recent|journal website]]. More details can be found at [[http://vmu.phys.msu.ru/recent|journal website]].
 +
 +===== Current status =====
 +{{:new3.png?48|}} //Nov.20, 2023//
 +  * Авторам разосланы гранки. Окончательная версия должна поступить в редакцию не позднее **4 декабря 2023г.**
 +  * В конце ноября будут разосланы верстки для окончательной правки.
 +  * DOI статей должны быть известны в начале декабря.
 +  * Желающие могут получить письмо из издательства о принятии статьи в печать. Для этого надо написать мне запрос по электроной почте [[kryukov@theory.sinp.msu.ru]].
 +  * Тексты статей на сайте издательства будут доступны в январе 2024г.
  
  
Line 57: Line 73:
 Более подробно правила изложены в {{ :dlcp2023:template_for_submissions_to_mupb.pdf |образце}}. Более подробно правила изложены в {{ :dlcp2023:template_for_submissions_to_mupb.pdf |образце}}.
  
 +/**
 ===== Status of submitted articles ===== ===== Status of submitted articles =====
- 
-//Paper status updates 1 time per day// 
- 
-<color red>//**Отправляя статью в сборник трудов авторы дают согласие на ее открытую публикацию в журнале и несут полную ответственность за ее содержание.**//</color> 
  
 Legend: Legend:
Line 74: Line 87:
   * Reject - The article was rejected   * Reject - The article was rejected
   * Withdrawn - Withdrawn from publication or not received on time   * Withdrawn - Withdrawn from publication or not received on time
 +**/
  
 ====== Final version of the Proceedings ====== ====== Final version of the Proceedings ======
 //**List of accepted papers**// //**List of accepted papers**//
  
-====Plenary Reports====+<color red>//**Отправляя статью в сборник трудов авторы дают согласие на ее открытую публикацию в журнале и несут полную ответственность за ее содержание.**//</color> 
 + 
 +===== Plenary Reports =====
  
-^ Corresponding Author and Article Title || 
 | **M.I.Petrovskiy**. DEEP LEARNING METHODS FOR THE TASKS OF CREATING "DIGITAL TWINS" FOR TECHNOLOGICAL PROCESSES    || | **M.I.Petrovskiy**. DEEP LEARNING METHODS FOR THE TASKS OF CREATING "DIGITAL TWINS" FOR TECHNOLOGICAL PROCESSES    ||
  
-==== Track 1. Machine Learning in Fundamental Physics ==== 
  
-^ Corresponding Author and Article Title   || +===== Track 1. Machine Learning in Fundamental Physics ===== 
-| Ju.Dubenskaya et al.Generating Synthetic Images of Gamma-Ray Events for Imaging Atmospheric Cherenkov Telescopes Using Conditional Generative Adversarial Networks || + 
-| R.R.Fitagdinov. Generation of the ground detector readings of the Telescope Array experiment and the search for anomalies using neural networks || +**Ju.Dubenskaya**. Generating Synthetic Images of Gamma-Ray Events for Imaging Atmospheric Cherenkov Telescopes Using Conditional Generative Adversarial Networks || 
-| K.A.Galaktionov / Neural network approach to impact parameter estimation in high-energy collisions using the microchannel plate detector data  || +**R.R.Fitagdinov**. Generation of the ground detector readings of the Telescope Array experiment and the search for anomalies using neural networks || 
-| E.O.Gres. The selection of gamma events from IACT images with deep learning methods  || +**K.A.Galaktionov** / Neural network approach to impact parameter estimation in high-energy collisions using the microchannel plate detector data  || 
-| A.Kryukov. Preliminary results of convolutional neural network models in HiSCORE experiment  || +**E.O.Gres**. The selection of gamma events from IACT images with deep learning methods  || 
-| A.Kryukov. The use of conditional variational autoencoders for simulation of EASs images from IACTs  || +**A.Kryukov**. Preliminary results of convolutional neural network models in HiSCORE experiment  || 
-| V.S.Latypova / Method for separating extensive air showers by primary mass using machine learning for a SPHERE-type Cherenkov telescope  || +**A.Kryukov**. The use of conditional variational autoencoders for simulation of EASs images from IACTs  || 
-| A.Y.Leonov. Deep Learning for Angle of Arrival Prediction in the Baikal Neutrino Telescope  || +**V.S.Latypova** / Method for separating extensive air showers by primary mass using machine learning for a SPHERE-type Cherenkov telescope  || 
-| A.V. Matseiko. Application of machine learning methods in Baikal-GVD:background noise rejection and selection of neutrino induced events  || +**A.Y.Leonov**. Deep Learning for Angle of Arrival Prediction in the Baikal Neutrino Telescope  || 
-| A.D.Zaborenko. Novelty Detection Neural Networks for Model-Independent New Physics Search  ||+**A.V. Matseiko**. Application of machine learning methods in Baikal-GVD:background noise rejection and selection of neutrino induced events  || 
 +**A.D.Zaborenko**. Novelty Detection Neural Networks for Model-Independent New Physics Search  ||
  
-==== Track 2. Machine Learning in Natural Sciences ====+===== Track 2. Machine Learning in Natural Sciences =====
  
-^ Corresponding Author and Article Title   || +**M.Borisov**. Estimating cloud base height from all-sky imagery using artificial neural networks  || 
-| M.Borisov. Estimating cloud base height from all-sky imagery using artificial neural networks                                                                                                                                                                      | 03/10/2023 | Consideration || +**S.Dolenko**(А.Guskov) Transfer Learning for Neural Network Solution of an Inverse Problem in Optical Spectroscopy  || 
-| S.Dolenko(А.Guskov) Transfer Learning for Neural Network Solution of an Inverse Problem in Optical Spectroscopy  || +**I.M.Gadzhiev**. Classification Approach to Prediction of Geomagnetic Disturbances  || 
-| I.M.Gadzhiev. Classification Approach to Prediction of Geomagnetic Disturbances  || +**V.Golikov**. Client-server application for automated estimation of the material composition of bottom sediments in the >0.1 mm fraction from microphotography using modern deep learning methods  || 
-| V.Golikov. Client-server application for automated estimation of the material composition of bottom sediments in the >0.1 mm fraction from microphotography using modern deep learning methods  || +**A.Kasatkin**. Machine learning techniques for anomaly detection in high-frequency time series of wind speed and greenhouse gas concentration measurements  || 
-| A.Kasatkin. Machine learning techniques for anomaly detection in high-frequency time series of wind speed and greenhouse gas concentration measurements  || +**I.Khabutdinov**. Identifying cetacean mammals in high-resolution optical imagery using anomaly detection approach employing Machine Learning models  ||  
-| I.Khabutdinov. Identifying cetacean mammals in high-resolution optical imagery using anomaly detection approach employing Machine Learning models  ||  +**M.Krinitsky**. Estimating significant wave height from X-band navigation radar using convolutional neural networks  || 
-| M.Krinitsky. Estimating significant wave height from X-band navigation radar using convolutional neural networks  || +**M.A.Ledovskikh**. Recognition of skin lesions from image   || 
-| M.A.Ledovskikh. Recognition of skin lesions from image   || +**A.V.Orekhov**. Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve    || 
-| A.V.Orekhov. Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve    || +**S.A.Pavlov**. Application of Machine Learning Methods to Numerical Simulation of Hypersonic Flow  || 
-| S.A.Pavlov. Application of Machine Learning Methods to Numerical Simulation of Hypersonic Flow  || +**V.Y.Rezvov**. Improvement of the AI-based estimation of signifi cant wave height based on preliminary training on synthetic X-band radar sea clutter images  || 
-| V.Y.Rezvov. Improvement of the AI-based estimation of signifi cant wave height based on preliminary training on synthetic X-band radar sea clutter images  || +**O.E.Sarmanova**. Decoding fluorescence excitation-emission matrices of carbon dots aqueous solutions with convolutional neural networks to create multimodal nanosensor of metal ions  || 
-| O.E.Sarmanova. Decoding fluorescence excitation-emission matrices of carbon dots aqueous solutions with convolutional neural networks to create multimodal nanosensor of metal ions  || +**A.Savin**. SMAP sea surface salinity improvement in the Arctic region using machine learning approaches  || 
-| A.Savin. SMAP sea surface salinity improvement in the Arctic region using machine learning approaches  || +**A.Tyshko**. Automatic detection of acoustic signals from white whales and bottle-nosed dolphins  || 
-| A.Tyshko. Automatic detection of acoustic signals from white whales and bottle-nosed dolphins  || +**A.V. Vorobev**. Machine learning for diagnostics of space weather effects in the Arctic region  ||
-| A.V. Vorobev. Machine learning for diagnostics of space weather effects in the Arctic region                                                                                                                                                                       | 23/08/2023  | Consideration  ||+
  
-==== Track 3. Modern Machine Learning Methods ====+===== Track 3. Modern Machine Learning Methods =====
  
-^ Corresponding Author and Article Title   || +**N.Y.Bykov** / Methods for a Partial Differential Equation Discovery: Application to Physical and Engineering Problems  || 
-| N.Y.Bykov / Methods for a Partial Differential Equation Discovery: Application to Physical and Engineering Problems  || +**S.Dolenko**. Decomposition of Spectral Contour into Gaussian Bands using Improved Modification of Gender Genetic Algorithm  || 
-| S.Dolenko. Decomposition of Spectral Contour into Gaussian Bands using Improved Modification of Gender Genetic Algorithm  || +**I.Isaev**. The study of the integration of physical methods in the neural network solution of the inverse problem of exploration geophysics with variable physical properties of the medium   || 
-| I.Isaev. The study of the integration of physical methods in the neural network solution of the inverse problem of exploration geophysics with variable physical properties of the medium   || +**D.N.Polyakov** / Hyper-parameter tuning of neural network for high-dimensional problems in the case of Helmholtz equation  ||
-| D.N.Polyakov / Hyper-parameter tuning of neural network for high-dimensional problems in the case of Helmholtz equation  ||+
  
 /** /**
dlcp2023/proceedings.1696533203.txt.gz · Last modified: 05/10/2023 22:13 by admin