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Abstract

This short note describes new features of the version 1.5 of the LanHEP software
package. The LanHEP program is aimed for Feynman rules generation in momentum
representation. It reads the Lagrangian written in the compact form close to one used in
publications, with summation over indices of broken symmetries and using special symbols
for complicated expressions. The output is Feynman rules in terms of physical fields and
independent parameters. Two formats are available for this output: CompHEP tables
and tables in LaTeX code.

Introduction

The LanHEP program is aimed for Feynman rules generation in momentum representation.
It reads the Lagrangian written in the compact form close to one used in publications, with
summation over indices of broken symmetries and using special symbols for complicated ex-
pressions. The output is Feynman rules in terms of physical fields and independent parameters.
Two formats are available for this output: CompHEP tables and tables in LaTeX code.

The format of the LanHEP input file is described in details in the LanHEP User’s Manual
[2]. The LanHEP program and related papers can be found in the WWW page:

http://theory.npi.msu.su/ semenov/lanhep.html
http://wwwlapp.in2p3.fr/cpp/lanhep.html

In this paper we describe new features implemented into LanHEP package since the 1.3 version:

e heuristics in the simplification of large trigonometric expressions;

checking and generating hermitian conjugate terms of the Lagrangian;

e 2-component fermion notation;

probing the kinetic and mass terms of the Lagrangian;

conditional processing of the model file;



using the superpotential formalism in MSSM and its extensions;

splitting the vertices with 4 colored particles at multiplet level,

checking the BRST invariance of the Lagrangian;

e constructing the ghost Lagrangian.

Also the existing functionality is improved:

— the function anti can be applied to the multiplets, rather than to the particles only;
— it is possible to use numeric indices at the matrices and multiplets, e.g. eps123;

Reducing the expressions containing elements of orthogonal matrices is improved. In the
previous versions only the products of 2 elements were processed, i.e. CZ-]CJ»Tk = 0;x. Now
products of 4 elements can be simplified as Cy;C}, CrnCr = 0ik0im;

— internal data representation is improved, so the speed and memory requirements signifi-
cantly enhanced.

1 Reducing the trigonometric expressions

Some physical models, such as Minimal Supersymmetric Standard Model [3] and Two Higgs
Doublet Model [4] (Feynman rules generations for these models by means of LanHEP are
described in [5, 6]) involve large expressions built of the trigonometric functions. In particular,
in the models mentioned above two angles, a and 3, are involved, thus the Lagrangian may be
written in LanHEP notation using the following definitions:

parameter sa=0.5:’sinus alpha’,
ca=Sqrt(l-sa**2):’cosine alpha’.
parameter sb=0.9:’sinus beta’,
cb=Sqrt (1-sb**2):’cosine beta’.

One can find in the output large expressions in terms of sa, sb, ca, cb. Usually these
expressions can be simplified by using derivative values like sin2«, sin(a + 3) etc. In the
previous version 1.3 the user was obliged to simplify all expressions appearing in the output
and declare them by SetAngle statement.

Now LanHEP can apply several heuristic algorithms to simplify these expressions. For each
angle «, user should declare parameters for sin «, cos «, sin 2«, cos 2a, tan . Than user should
use angle statement:

angle sin=pl, cos=p2, sin2=p3, cos2=p4, tan=pdH, texname=name.

Here pN — parameter identifiers, name — LaTeX name for angle, it is used to generate au-
tomatically LaTeX names for trigonometric functions of this angle if these names are not set
explicitly by SetTexName statement. This statement should immediately follow the declaration
of the parameters for sina and cosa. Only the sin and cos options are obligatory. Other
parameters (i.e. sin 2aq, cos 2a, tan «) should be declared if these parameters are defined before
sina and cosa. If the former parameters will be declared in terms of latter ones, they are
recognized automatically and they need not appear in angle statements.
For example, the declaration for trigonometric functions of 3 angle in MSSM may read:



parameter tb=2.52:’Tangent beta’.
parameter sb=tb/Sqrt(l+tb**2):’Sinus beta’.
parameter cb=Sqrt(l-sb**2):’Cosine beta’.

angle sin=sb, cos=cb, tan=tb, texname=’\\beta’.

parameter s2b=2xsb*cb:’Sinus 2 beta’.
parameter c2b=cb**2-sbx*2:’Cosine 2 beta’.

Here the parameters s2b and c2b are recognized automatically by LanHEP as sin 2a: and cos 2«
since they are declared in terms of sa, ca parameters.

For a couple of angles ( «, § in this example) the user should declare the parameters for
sin(a + ), cos(a + (), sin(a — ), and cos(a — [3) to allow using all implemented heuristics:

parameter sapb=sa*cb+ca*sb : ’sin(a+b)’.
parameter samb=sa*cb-ca*sb : ’sin(a-b)’.
parameter capb=ca*cb-sa*sb : ’cos(atb)’.
parameter camb=ca*cb+sa*sb : ’cos(a-b)’.

These parameters are recognized as trigonometric functions automatically, by analysis of the
right-side expressions.
It is possible to control the usage of heuristics by the statement:

option SmartAngleComb=N.
where N is a number:
0 heuristics are switched off;
1 heuristics are switched on (by default);

2 same as 1, prints the generated substitution rule if the simplified expressions is consists
of more than 3 monomials;

3 same as 1, prints all generated substitution rule.

4 same as 1, prints all generated substitution rule and some intermediate expressions (debug
mode).

The substitution rules are printed as SetAngle statement and can be used for manual
improvement of expressions.

2 Two-component notation for fermions

It is possible to write Lagrangian terms using two-component notation for fermions. The con-
nection between two-component and four-component notations is summarized by the following

relations: . .
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If the user has declared a spinor particle p (with antiparticle P), the LanHEP notation for
its components is:



up (p)
down (p)

el

§
U]
ul
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up(cc(p)) or up(P)
down(cc(p)) or down(P)
To use the four-vector * one should use the statement

special sigma: (spinor2,spinor2,vector).

Note that the sigma object is not defined by default, thus the above statement is required. It is
possible also to use another name instead of sigma (this object can be recognized by LanHEP

by the types of its indices).

LanHEP uses the following rules to convert the two-component fermions to four-component
ones (we use Pry = (1+£+°)/2):

méz = Y1 Pris
&2 = Y1 Prips
§1&2 = Y1 PLo
§18a = Y1 PryS
§ine = YT PLYs
§172 = Y1 PRrYs;
mnz = V1 Prys
e = Y Prib

§10"& = U1y Py
motny = YiyH Prs

up (P1) *up (p2)
down (P1) *down (p2)
up (p1)*up (p2)
down (P1) *down (P2)
up (p1) *up (P2)
down (p1) *down (P2)
up (P1) *up (P2)
down (p1) *down (p2)

down (P1) *sigma*up (p2)
down (p1)*sigma*up(P2)

3 Hermitian conjugate terms

Ll bl

I

P1x(1-gammab) /2*p2
P1x(1+gammab) /2*p2
cc(pl)*(1-gammab) /2*p2
P1x(1+gammab) /2*cc (P2)
cc(pl)*(1-gammab) /2*cc (P2)
cc(pl)*(1+gammab) /2*cc (P2)
P1x(1-gammab) /2*cc (P2)
cc(pl)*(1+gammab) /2*p2

Plxgamma* (1-gammab) /2*p2
cc(pl) *gamma* (1-gammab) /2*cc (P2)

LanHEP is able to check the correctness of hermitian conjugate terms in the Lagrangian. To
do this, user should use the statement:

CheckHerm.

For example, let us consider the following (physically meaningless) input file, where charged

scalar field is declared and cubic terms are introduced:

scalar h/H.
parameter a,b,c.

lterm a* (hxh*H+H*H*h)+b*xhxh*H+c*H*xH*h + h**3.

CheckHerm.

The output of LanHEP is the following (here 2 is the symmetry factor):

CheckHerm: vertex (h, h, h): conjugate (H, H, H) not found.
CheckHerm: inconsistent conjugate vertices:

(H, h, h)
2%a <-
2xb <>
(not found) <-

(H, H, h)
2%a
(not found)
2%C



If the conjugated vertex is not found, warning message is printed. If both vertices are present
but they are inconsistent, more detailed output is provided. For each couple of the incorrect
vertices LanHEP outputs 3 kinds of monomials: 1) those which are found in both vertices
(these monomials are correctly conjugated), 2) the monomials found only in first vertex, and
3) the monomials found only in the second vertex.

It is possible to generate hermitian conjugate terms automatically by putting the symbol
AddHermConj to lterm statement:

lterm ezpr + AddHermConj.
Continuing the former example, one can write:
lterm a*H*H*h + b*H**3 + AddHermConj.

Note, that the symbol AddHermConj adds hermitian conjugate to all terms in the lterm
statement. It means in particular that in the statement

lterm exprl + (expr?2 + AddHermConj) .

the conjugate terms are added to both expri and expr2. Thus, one should not place self-
conjugate terms in the lterm statement where AddHermConj present (or one should supply
these terms with 1/2 factor).

4 Probing the kinetic and mass terms of the Lagrangian

When LanHEP is used to generate CompHEP model files, the information about particles prop-
agators is taken from the particle declaration, where particle mass and width (for Breit-Wigner’s
propagators) are provided. Thus, the user is not obliged to supply kinetic and mass terms in
lterm statements. Even if these terms are written, they do not affect the CompHEP output.
Version 1.4 of LanHEP allows user to examine whether the mass sector of the Lagrangian is
consistent. To do this, use the statement

CheckMasses.

This statement must be put after all 1term statements of the input file.
When the CheckMasses statement is used, LanHEP creates the file named masses.chk in
the current directory. It contains the warning messages if some inconsistencies are found:

e missing or incorrect kinetic term;
e mass terms with mass different from the value specified at particle declaration;
e off-diagonal mass terms.

Note that in the complicated models like MSSM the masses could depend on other parame-
ters and LanHEP is not able to prove that expressions in actual mass matrix and in parameters
declared to be the masses of particles are identical. Moreover, it is often impossible to express
the masses as formulas written in terms of independent parameters. For this reason LanHEP
evaluates the expressions appearing in mass sector numerically (basing on the parameters values
specified by user).



It is typical for MSSM that some fields are rotated by unitary matrices to diagonalize mass
terms. In some cases, values of mixing matrices elements can not be expressed by formulas
and need to be evaluated numerically. LanHEP can recognize mixing matrix if the elements of
this matrix were used in OrthMatrix statement. LanHEP restores and prints the mass original
matrix before fields rotation by mixing matrix. Then LanHEP calculates numerical values of
mixing matrix elements to diagonalize the physical mass matrix (CERNIib routine E202 is
used).

5 Conditional processing of the model

Let us consider the LanHEP input files for Standard Model with t’"Hooft-Feynman and unitary
gauge-fixing. It is clear that these input files differ by several lines only — the declaration of
gauge bosons and Higgs doublet. It is more convenient to have only one model definition file.
In this case the conditional statements are necessary. LanHEP allows the user to define several
keys, and use these keys to branch among several variants of the model. The keys have to be
declared by the keys statement:

keys namel=valuel, name2=value2, ... .
Then one can use the conditional statements:

do_if key==valuel.
actionsl

do_else_if key==value2.
actions?2

do_else_if key==value3.

do_else.
default actions
end_if.

The statements do_else_if and do_else are not obligatory. The value of the key is a
number or symbolic string. An example of using these statement in the Standard model may
read:

keys Gauge=unitary.

do_if Gauge==Feynman.
vector Z/Z:(’Z-boson’,mass MZ
do_else_if Gauge==unitary.

91.187, width wZ

2.502, gauge) .

vector Z/Z:(’Z-boson’,mass MZ = 91.187, width wZ = 2.502).
do_else.

write("Error: key Gauge must be either Feynman or unitary’).
quit.

end_if.

Thus, to change the choice of gauge fixing in the generated Feynman rules it is enough to
modify one word in the input file. There is another opportunity, to set the key value from the
command line at LanHEP launch:



lhep -key Gauge=Feynman filename.

If the value of key is set from the command line at the program launch, the value for this
key in the keys statement is ignored.

6 Using the superpotential formalism in MSSM and its
extensions

In the supersymmetric models one makes use of the superpotential — a polynomial W depend-
ing on scalar fields A; (superpotential also can be defined in terms of superfields, we do not
consider this case). Then, there is the contribution to the Lagrangian: Yukawa terms in the
form 52
1 w
— | ==Y,V + H.c
2 (aAiaAj it C)
and FF; terms, where F; = OW/0A; (for more details, see [3] and references therein).

To use this formalism in LanHEP, one should define first the multiplets of matter fields and
then define superpotential as let-substitution. The example of MSSM with single generation
may read:

keep_lets W.
let W=eps*(mu*xH1*H2+m1*H1*L*xR+md*H1*Q+D+mu*xH2*Q*U) .

Here symbols H1, H2, L, R, Q, U, D are defined somewhere else as doublets and singlets in
terms of scalar particles.

Note that before the definition of W this symbol should appear in the keep_lets statement.
It is necessary to notify LanHEP that let-substitutions (multiplets) at the definition of W should
not be expanded. Without this statement, W will not contain symbols of multiplets but only
the particles which were used at multiplets definition.

Since W was declared in the keep_lets statement and contains the symbols of multiplets,
one can evaluate the variational derivative of W by one or two multiplets, e.g. df (W,H1) or
df (W,H1,L). Thus the Yukawa terms may be written:

lterm - df (W,H1,H2)*fH1*fH2 - ... + AddHermConj.

Here fH1, fH2 are fermionic partners of corresponding multiplets.
To introduce the FF; terms one needs to declare conjugated superpotential, e.g. Wc, and
write:

lterm - df (W,H1)*df (Wc,Hic) - ....
The better way is to use the function dfdfc(W,H1) instead:
lterm - dfdfc(W,H1) - ....

The function evaluates the variational derivative, multiply it by conjugated expression and
returns the result. Moreover, it can introduce auxiliary fields to split vertices with 4 color
particles (in the case of CompHEP output); see the next section for more details.



7 Splitting the vertices with 4 colored particles

CompHEP Lagrangian tables don’t describe explicitly color structure of a vertex. If color
particles present in the vertex, the following implicit convolutions are assumed (supposing
p,q,r are color indices of particles in the vertex):

® 0y, for two color particles A}, AZ;
e )7, for three particles, which are color triplet, antitriplet and octet;
e fP4" for three color octets.

Other color structures are forbidden in CompHEP.
So, to introduce the 4-gluon vertex fP"G4Gy fP*G% G, one should split this 4-legs vertex
into 3-legs vertices fP1"GLG, XV :

G-,

Here the field X, is Lorenz tensor and color octet, and this field also has constant propa-
gator. If gluon name in CompHEP is *G’, the name ’G.t’ is used for this tensor particle; its
indices denoted as ’m_’ and *M_’ (’_’ is the number of the particle in table item).

The described transformation is performed by LanHEP automatically and transparently for
the user. Each vertex containing 4 color particles is splitted to 2 vertices which are joined by
automatically generated auxiliary field.

The same technique is applied in MSSM where more vertices with 4 color particles appear:
vertices with 2 gluons and 2 squarks and vertices with 4 squarks. However, the large amount
of vertices with 4 squarks requires many auxiliary fields, which can easily break CompHEP
limitations on the particles number. It is possible however to reduce significantly the number
of vertices and auxiliary fields if one introduce auxiliary fields at the level of multiplets.

The vertices with 4 squarks come from DD and F*F terms. For example, there is the term
%Dg ¢ in the Lagrangian,

D¢ = gs(QiN“Q; + D*\*D + D*\*D),

where ), D, U are squarks multiplets, and A is Gell-Mann matrix. Instead of evaluating this
expression and that splitting all vertices independently, one can introduce one color octet
auxiliary field £* and write this Lagrangian term as D&E®.

Other DD terms contain both color and colorless particles. Thus, the term D% D, with

DYy = g (Q*T'Q + L*T"L + H{T'H, + H;T"H,),
can be represented as

G (QT'Q)E + G (QT'QNL*T'L + H{T'Hy + HyT'H,) + ¢;(L*T'L + H{T'H, + H;T'Hy)*



where £ is the triplet of auxiliary fields. This terms can also be written in the another form:
G (QTQ + L*T' LY + ¢*(Q*T'Q + L*T'LY(H;T'Hy + H;T'Hy) + ¢>(H;T'Hy + H;T'H,)?,

where all vertices with 4 scalars (except vertices with Higgs particles) are splitted. Although
the latter splitting is not obligatory, it can reduce significantly the amount of vertices.

The similar technique is applicable to the F*F terms, with the transformation FF; —
FYE + B

Thus, we distinguish two types of vertices splitting: splitting at multiplet level and splitting
at vertices level. Note that splitting the vertices with two gluons and two squarks must be done
at vertices level after combining the similar terms, otherwise they would contain the elements
of squark mixing matrices.

The vertices splitting at multiplet level is implemented in LanHEP mainly for MSSM needs.
The first case refers to DD terms. The user should declare several let-substitutions and then
put in lterm statement the squared sum:

let al=g*Q*xtaux*xq/2,
a2=gkxLxtauxl/2,
a3=g*xHl*xtau*hl/2,
ad=g*xH2*xtau*h2/2.
lterm - (al + a2 + a3 + a4 ) **x 2 / 2.

In this case LanHEP looks for the square of the sum of several let-substitution symbols,
each containing two color or merely scalar particles. If such expression is found, it is replaced as
in the previous formulas. Higgs doublets are not taking into transformation, since they contain
VEVs.

The vertices splitting in F*F terms is performed by dfdfc function (see previous section).
After taking the variational derivative the monomials with two color or scalar particles (except
Higgs ones) are multiplied by auxiliary fields, thus mediating the vertices with 4 color (scalar)
particles.

The multiplet level vertices splitting is controlled by the statement

option SplitColl=N.
where N is a number:
-1 remove all vertices with 4 color particles from Lagrangian;
0 turn off multiplet level vertices splitting;
1 allows vertices splitting with 4 color multiplets;
2 allows vertices splitting with any 4 scalar multiplets (except Higgs ones).

The value of this option can be set to different values before executing different 1term state-
ments.

The vertices level splitting is performed after combining similar terms of the Lagrangian.
This splitting can be controlled by the statement

option SplitCol2=N.



where N is a number:

0 disable vertex level splitting;

1 enable vertex level splitting (only for vertices with 4 color particles).

For CompHEP output, the default value is 2 for SplitColl and 1 for SplitCol2. For
LaTeX output, default value is 0 for both options.

8 Checking BRST invariance and constructing the ghost
Lagrangian

LanHEP can check the BRST invariance (see the reviews in [7, 8]) of the Lagrangian. First,
the user should declare the BRST transformations for the fields in the model by means of
brst_transform statement:

brst_transform field -> expression.

For example, the BRST transformation for the photon §A4, = 9,c* + ie(Wi e —W;rch)
can be prescribed by the statement:

brst_transform A -> deriv*’A.c’+i*EEx(C’W+’*’W-.c’ - W-"*’W+.c?).

The file ’sm_brst.mdl’ in LanHEP distribution contains the code for gauge and Higgs fields
transformation corresponding to the CompHEP implementation of the Standard model.
Since the transformations are defined, the statement

CheckBRST.

enables the BRST transformation for Lagrangian terms (so it should be placed before the first
lterm statement). The output is CompHEP or LaTeX file with resulting expression. Certainly,
if the Lagrangian is correct, the output files are empty. However some expressions identical to
zero could be not simplified and remain in the output.

The BRST transformations allow also to construct the ghost Lagrangian ([9]). The gauge-
fixing Lagrangian reads as:

1 1
Lor =G G+ 5|GZ\2 + i\mﬁ,

where G' (i = =+,7,7) are gauge-fixing functions. The ghost Lagrangian ensures the BRST
invariance of the entire Lagrangian and can be written as

Lan = —&6prs7G" + SprsrLan-

where ¢ BRSTEGh is an overall function, which is BRST-invariant.
So, for the photon and G” = (0 - A), the LanHEP code for gauge-fixing and ghost terms
read as:

let G_A = derivx*A.
lterm -G_A*%2/2.
lterm -’A.C’*brst(G_A).

Here the brst function is used to get BRST-transformation of the specified expression.

The inverse BRST transformation can also be used. One can declare the transformations
for the fields by means of brsti_transform. The function brsti(expr) can be used in lterm
statements.
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