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Introduction

LanHEP has been designed as a part of the CompHEP package [1], worked out for automatic calculations in
high energy physics. CompHEP allows symbolic computation of the matrix element squared of any process with
up to 6 incoming and outgoing particles for a given physical model (i.e. a model defined by a set of Feynman
rules as a table of vertices in the momentum representation) and then numerical calculation of cross-sections
and various distributions.

Main purpose of the new option given by LanHEP program is designing of a new physical model. LanHEP
program makes possible the generation of Feynman rules for propagators and vertices in momentum representa-
tion starting from the Lagrangian defined by a user in some simple format very similar to canonical coordinate
representation. User should prepare a text file with description of all Lagrangian terms in the format close to
the form used in standard publications. Of course, user has to describe all particles and parameters appearing
in Lagrangian terms.

The main LanHEP features are:

• LanHEP expands expression and combines similar terms;

• it performs the Fourier transformation by replacing derivatives with momenta of particles;

• it writes Feynman rules in the form of four tables in CompHEP format as well as tables in LaTeX format;

• user can define the substitution rules, for example for covariant derivative;

• it is possible to define multiplets, and (if necessary) their components;

• user can write Lagrangian terms with Lorentz and multiplet indices explicitly or omit indices (all or some
of them);

• LanHEP performs explicit summation over the indices in Lagrangian terms, if the corresponding compo-
nents for multiplets and matrices are introduced;

• it allows the user to introduce vertices with 4 fermions and 4 colored particles (such vertices can’t be
introduced directly in CompHEP) by means of auxiliary field with constant propagator;

• it also can check whether the set of introduced vertices satisfies the electric charge conservation law.

1 QED by means of LanHEP

We start from a simple exercises, illustrating the main ideas and features of LanHEP. The first physical model
is Quantum Electrodynamics.

model QED/1.

parameter ee=0.31333:’elementary electric charge’.

spinor e1/E1:(electron, mass me=0.000511).

vector A/A:(photon).

let F^mu^nu=deriv^nu*A^mu-deriv^mu*A^nu.

lterm -1/4*(F^mu^nu)**2 - 1/2*(deriv^mu*A^mu)**2.

lterm E1*(i*gamma*deriv+me)*e1.

lterm ee*E1*gamma*A*e1.

Figure 1: LanHEP input file for the generation of QED Feynman rules

QED Lagrangian is

LQED = −1

4
FµνF

µν + ēγµ(i∂µ + geAµ)e−mēe

and the gauge fixing term in Feynman gauge has the form

LGF = −1

2
(∂µA

µ)2.

Here e(x) is the spinor electron-positron field, m is the electron mass, Aµ(x) is the vector photon field, Fµν =
∂νA

µ − ∂µA
ν , and ge is the elementary electric charge.
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The LanHEP input file to generate the Feynman rules for QED is shown in Fig. 1.
First of all, the input file consists of statements. Each statement begins with one of the reserved keywords

and ends by the full-stop ’.’ symbol.
First line says that this is a model with the name QED and number 1. This information is supplied for

CompHEP, the name QED will be displayed in its list of models. In CompHEP package each model is described
by four files: ’varsN.mdl’, ’funcN.mdl’, ’prtclsN.mdl’, ’lgrngnN.mdl’ , where N is the very number specified in
the model statement.

The model statement stands first in the input file. If this statement is absent, LanHEP does not generate
four standard CompHEP files, just builds the model and prints diagnostic if errors are found.

Second line in the input file contains declaration of the model parameter, denoting elementary electric charge
ge as ee. For each parameter used in the model one should declare its numeric value and optional comment (it
is also used in CompHEP menus).

The next two lines declare particles. Statement names spinor, vector correspond to the particle spin. So,
we declare electron denoted by e1 (the corresponding antiparticle name is E1) and photon denoted by A (with
antiparticle name being A, since the antiparticle for photon is identical to particle).

After particle name we give in brackets some options. The first one is full name of the particle, used in
CompHEP; the second option declares the mass of this particle.

The let statement in the next line declares the substitution rule for symbol F, which will be replaced in the
further Lagrangian terms by the expression given in this statement.

Predefinite name deriv, reserved for the derivation ∂
∂x

, will be replaced after the Fourier transformation by
the momentum of the particle multiplied by −i.

The rest of the lines describe Lagrangian terms. Here the reserved name gamma denotes Dirac’s γ-matrices.
One can see that the indices are written separated with the caret symbol ’ˆ’. Note that in the last two lines

we have omitted indices. It means that LanHEP restores omitted indices automatically. Really, one can type
the last term in the full format:

lterm ee*E1^a*gamma^a^b^mu*A^mu*e1^b.

It corresponds to geēaγ
µ
abebAµ with all indices written. Note that the order of objects in the monomial is

important to restore indices automatically.

2 QCD

Now let us consider the case of the Quantum Chromodynamics. The Lagrangian for gluon fields reads

LY M = −1

4
F aµνF a

µν ,

where
F a

µν = ∂µG
a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

Ga
µ(x) is the gluon field, gs is a strong charge and fabc are purely imaginary structure constants of SU(3) color

group.
The quark kinetic term and its interaction with the gluon has the form

LF = q̄iγ
µ∂µqi + gsλ

a
ij q̄iγ

µqjG
c
µ,

where λa
ij are Gell-Mann matrices.

Gauge fixing terms in Feynman gauge together with the corresponding Faddev-Popov ghost term are

−1

2
(∂µG

µ
a)2 + igsf

abcc̄aGb
µ∂

µcc,

where (c, c̄) are unphysical ghost fields.
The corresponding LanHEP input file is shown in Fig. 2.
Since QCD uses objects with color indices, one has to declare the indices of these objects. There are three

types of color indices supported by LanHEP. These types are referred as color c3 (color triplets), color c3b

(color antitriplets), and color c8 (color octets). One can see that color c3 index type appears among the
options in the quark q declaration, and the color c8 one in the gluon G declaration. Antiquark Q has got color
index of type color c3b as antiparticle to quark. LanHEP allows convolution of an index of type color c3

only with another index of type color c3b, and two indices of type color c8. Of course, in Lagrangian terms
each index has to be convoluted with its partner, since Lagrangian has to be scalar.
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model QCD/2.

parameter gg=1.117:’Strong coupling’.

spinor q/Q:(quark, mass mq=0.01, color c3).

vector G/G:(gluon, color c8, gauge).

let F^mu^nu^a = deriv^nu*G^mu^a - deriv^mu*G^nu^a -

gg*f SU3^a^b^c*G^mu^b*G^nu^c.

lterm -F**2/4-(deriv*G)**2/2.

lterm Q*(i*gamma*deriv+mq)*q.

lterm i*gg*f SU3*ccghost(G)*G*deriv*ghost(G).

lterm gg*Q*gamma*lambda*G*q.

Figure 2: Input file for the generation of QCD Feynman rules

Table 1: QCD Feynman rules generated by LanHEP in LaTeX output format

Fields in the vertex Variational derivative of Lagrangian by fields
Gµp G.Cq G.cr −gg · pµ

3fpqr

Qap qbq Gµr gg · γµ
abλ

r
pq

Gµp Gνq Gρr ggfpqr

(

pν
3g

µρ − pρ
2g

µν − pµ
3 g

νρ + pρ
1g

µν + pµ
2 g

νρ − pν
1g

µρ
)

Gµp Gνq Gρr Gσs gg2
(

gµρgνσfpqtfrst − gµσgνρfpqtfrst + gµνgρσfprtfqst

+gµνgρσfpstfqrt − gµσgνρfprtfqst − gµρgνσfpstfqrt

)

LanHEP allows also to use in the Lagrangian terms a predefined symbol lambda with the three indices of
types color c3, color c3b, color c8 corresponding to Gell-Mann λ-matrices. Symbol f SU3 denotes the
structure constant fabc of color SU(3) group (all three indices have the type color c8).

Option gauge in the declaration of G allows to use names ghost(G) and ccghost(G) for the ghost fields c
and c̄ in Lagrangian terms and in let statements.

Table 1 shows Feynman rules generated by LanHEP in LaTeX format after processing the input file presented
in Fig. 2. Four gluon vertex rule is indicated in the last line. Note that the output in CompHEP format has no
4-gluon vertex explicitly; it is expressed effectively through 3-leg vertices by the constant propagator of some
auxiliary field (see Appendix A for more details).

3 Syntax

The LanHEP input file is the sequence of statements, each starts with a special identifier (such as parameter,
lterm etc) and ends with the full-stop ’.’ symbol. Statement can occupy several lines in the input file.

This section is aimed to clarify the syntax of LanHEP input files, i.e. the structure of the statements.

3.1 Constants and identifiers

First of all, each word in any statement is either an identifier or a constant.
Indentfiers are the names of particles, parameters etc. Examples of identifiers from the previous section are

particle names

e1 E1 A q Q G

The first word in each statement is also an identifier, defining the function which this statement performs. The
identifiers are usually combinations of letters and digits starting with a letter. If an identifier doesn’t respect
this rule, it should be quoted. For example, the names of W± bosons must be written as ’W+’ and ’W-’, since
they contain ’+’ and ’–’ symbols.

Constants can be classified as

• integers: they consist of optional sign followed by one or more decimal digits, such as

0 1 -1 123 -98765
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Integers can appear in Lagrangian terms, parameter definition and in other expressions.

• Floating point numbers include optional sign, several decimal digits of mantissa with an embedded period
(decimal point) with at least one digit before and after the period, and optional exponent. The exponent,
if present, consist of letter E or e followed by an optional sign and one or more decimal digits. The valid
examples of floating point numbers are

1.0 -1.0 0.000511 5.11e-4

Floating point numbers are used only as parameter values (coupling constants, particle masses etc). They
can not be explicitly used in Lagrangian terms.

• String constants may include arbitrary symbols. They are used as comments in parameter statements,
full particle names in the declaration of a particle, etc. Examples from the previous section are

electron

photon

If a string constant contains any character besides letters and digits or doesn’t begin with a letter, it
should be quoted. For example, the comments in QED and QCD input files (see previous section) contain
blank spaces, so they are quoted:

’elementary electric charge’

’Strong coupling’

3.2 Comments

User can include comments into the LanHEP input file in two ways. First, symbol ’%’ denotes the comment
till the end of current line. Second way allows one to comment any number of lines by putting a part of input
file between ’/*’ (begin of comment) and ’*/’ (end of comment) symbols.

4 Objects in the expressions for Lagrangian terms

Each symbol which may appear in algebraic expressions (names of parameters, fields, etc) has a fixed order of
indices and their types. If this object is used in any expression, one should write its indices in the same order
as they were defined when the object has been declared.

Besides the indices types corresponding to color SU(3) group: color c3 (color triplet), color c3b (color
antitriplet) and color c8 (color octet) described in the previous example, there are default types of indices
for Lorentz group: vector, spinor and cspinor (antispinor). User can also declare new types of indices
corresponding to the symmetries other than color SU(3) group. In this case any object (say, particle) may have
indices related to this new group. This possibility will be described in Section 7.

If an index appears twice in some monomial of an expression, LanHEP assumes summation over this index.
Types of such indices must allow the convolution, i.e. they should be one of the pairs: spinor and cspinor,
two vector, color c3 and color c3b, two color c8.

In general the following objects are available to appear in the expressions for a Lagrangian: integers and
identifiers of parameters, particles, specials, let-substitutions and arrays.

There are also predefined symbols i, denoting imaginary unit i (i2 = −1) and Sqrt2, which is a parameter
with value the

√
2.

4.1 Parameters

Parameters are scalar objects (i.e. they have no indices). Parameters denote coupling constants, masses and
widths of particles, etc. To introduce a new parameter one should use the parameter statement, which has the
generic form

parameter name=value:comment.

• name is an identifier of newly created parameter.

• value is an integer or floating point number or an expression. One can use previously declared parameters
and integers joined by standard arithmetical operators ’+’, ’-’, ’*’, ’/’, and ’**’ (power).
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• comment is an optional comment to clarify the meaning of parameter, it is used in CompHEP help
windows. Comment has to be a string constant, so if it contains blank spaces or other special characters,
it must be quoted (see Section 3).

4.2 Particles

Particles are objects to denote physical particles. They may have indices. It is possible to use three statements
to declare a new particle, at the same time the second and the third statements define the corresponding Lorentz
index:

scalar P/aP:(options).
spinor P/aP:(options).
vector P/aP:(options).

P and aP are identifiers of particle and antiparticle. In the case of truly neutral particles (when antiparticle is
identical to the particle itself) one should use the form P/P with identical names for particle and antiparticle.

It is possible to write only the particle name, e.g.

scalar P:(options).

In this case the name of corresponding antiparticle is generated automatically. It satisfies the usual CompHEP
convention, when the name of antiparticle differs from particle by altering the case of the first letter. So for
electron name e1 automatically generated antiparticle name will be E1. If the name contains symbol ’+’ it is
replaced by ’–’ and vice versa.

The option is comma-separated list of options for a declared particle, and it may include the following items:

• the first element in this list must be the full name of the particle, (e.g. electron and photon in our
example.) Full name is string constant, so it should be quoted if it contains blanks, etc.

• mass param=value defines the mass of the particle. Here param is an identifier of new parameter, which is
used to denote the mass; value is its value, it has the same syntax as in the parameter statement, comment
for this new parameter being generated automatically. If this option omitted, the mass is assumed to be
zero.

• width param=value declares the width of the particle. It has the same syntax as for mass option.

• itype is a type of index of some symmetry; one can use default index types for color SU(3) group (see
QCD example in Section 2). It is possible to use user-defined index types (see Section 7) and Lorentz
group indices vector, spinor, cspinor.

• left or right say that the massless spinor particle is an eigenstate of (1− γ5)/2 or (1+ γ5)/2 projectors,
so this fermion is left-handed or right-handed one.

• gauge declares the vector particle as a gauge boson. This option generates corresponding ghosts and
goldstone bosons names for the named particle (see below).

When a particle name is used in any expression (in Lagrangian terms), one should remember that the first
index is either vector or spinor one (of course, if this particle is not a Lorentz scalar). Then the indices follow
in the same order as index types in the options list. So, in the case of quark declaration (see QCD example)
the first index is spinor, and the second one is color triplet.

There are several functions taking particle name as an argument which can be used in algebraic expressions.
These functions are replaced with auxiliary particle names, which are generated automatically.

• Ghost field names in gauge theories are generated by the functions ghost(name) → ’name.c’ and
ccghost(name) → ’name.C’ (see for instance Table 1). Here and below name is the name of the
corresponding gauge boson.

• Goldstone boson field name in the t’Hooft-Feynman gauge is generated by the function gsb(name) →
’name.f’.

• The function anti(name) generates antiparticle name for the particle name.

• The name for a charge conjugated spinor particle ψc = Cψ̄T is generated by the function cc(name) →
’name.c’. Charge conjugated fermion has the same indices types and ordering, however index of spinor
type is replaced by the index type cspinor and vice versa.
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• vev(expr) is used in Lagrangian terms for vacuum expectation values. Function vev ensures that
deriv*vev(expr) is zero. In other words, vev function forces LanHEP to treat expr as a scalar par-
ticle which will be replaced by expr in Feynman rules.

4.3 Specials

Besides parameters and particles other indexed such as γ-matrices, group structure constants, etc may appear
in the Lagrangian terms. We refer such objects as specials.

Predefined specials of Lorentz group are:

• gamma stands for the γ-matrices. It has three indices of spinor, cspinor and vector types.

• gamma5 denotes γ5 matrix. It has two indices of spinor and cspinor types.

• moment has one index of vector type. At the stage of Feynman rules generation this symbol is replaced
by the particle moment.

• deriv is replaced by −ipµ, where pµ is the particle moment. It has one vector index.

Specials of color SU(3) group are:

• lambda denotes Gell-Mann λ-matrices. It has three indices: color c3, color c3b and color c8.

• f SU3 is the SU(3) structure constant. It has three indices of color c8 type.

Note that for specials the order of indices types is fixed.
User can declare new specials with the help of a facility to introduce user-defined indices types (see Section 7).

4.4 Let-substitutions

LanHEP allows the user to introduce new symbols and then substitute them in Lagrangian terms by some
expressions. Substitution has the generic form

let name=expr.

where name is the identifier of newly defined object. The expression has the same structure as those in
Lagrangian terms, however here expression may have free (non-convoluted) indices.

Typical example of using a substitution rule is a definition of the QED covariant derivative as

let Deriv^mu=deriv^mu + i*ee*A^mu.

corresponding to Dµ = ∂µ + igeAµ.
More complicated example is the declaration σµν ≡ i(γµγν − γνγµ)/2 matrices:

let sigma^a^b^mu^nu = i*(gamma^a^c^mu*gamma^c^b^nu - gamma^a^c^nu*gamma^c^b^mu)/2.

Note that the order of indices types of new symbol is fixed by the declaration. So, first two indices of sigma
after this declaration are spinor and antispinor, third and fourth are vector indices.

4.5 Arrays

LanHEP allows to define components of indexed objects. In this case, convolution of indices will be performed
as an explicit sum of products of the corresponding components.

Object with explicit components has to be written as

{expr1, expr2 ..., exprN }^i
where expressions correspond to components. All indices of components (if they present) have to be written at
each component, and the index numbering components has to be written after closing curly bracket. Of course,
all the components must have the same types of free (non-convolved) indices.

Arrays are usually applied for the definition of multiplets and matrices corresponding to broken symmetries.
Typical example of arrays usage is a declaration of electron-neutrino isospin doublet l1 (and antidoublet

L1)

let l1^a^I = { n1^a, e1^a}^I, L1^a^I = { N1^a, E1^a}^I.
Here we suppose that n1 was declared as the spinor particle (neutrino), with the antiparticle name N1.

Matrices can be represented as arrays which have other arrays as components. However, it is more convenient
to declare them with omitted indices, see Section 6.4 (the same is correct for multiplets also).

It is possible also to use arrays directly in the Lagrangian terms, rather than only in the declaration of
let-substitution.
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5 Structure of expressions for the Lagrangian

When all parameters and particles necessary for introduction of physical model are declared, one can enter
Lagrangian terms with the help of the lterm statement:

lterm expr.

Elementary objects of expression are integers, identifiers of parameters, particles, specials, let-substitutions,
and arrays.

These elementary objects can be combined by usual arithmetical operators as

• expr1+expr2 (addition),

• expr1–expr2 (subtraction),

• expr1*expr2 (product),

• expr1/expr2 (fraction; here expr2 must be a product of integers and parameters),

• expr1**N (Nth power of expr1; N must be integer).

One can use brackets ’(’ and ’)’ to force the precedence of operators. Note, that indices can follow only
elementary objects symbols, i.e. if A1 and A2 were declared as two vector particles then valid expression for
their sum is A1^mu+A2^mu, rather than (A1+A2)^mu.

5.1 Where-substitutions

More general form of expressions involves where-substitutions:

expr where subst.

In the simple form subst is name=repl or several constructions of such kind separated by comma ’,’. In the
form of such kind each instance of identifier name in expr is replaced by repl.

Note that in contrast to let-substitutions, where-substitution doesn’t create a new object. LanHEP simply
replaces name by repl, and then processes the resulting expression. It means in particular that name can not
have indices, although it can denote an object with indices:

lterm F**2 where F=deriv^mu*A^nu-deriv^nu*A^mu.

is equivalent to

lterm (deriv^mu*A^nu-deriv^nu*A^mu)**2.

The substitution rule introduced by the keyword where is active only within the current lterm statement.
More general form of where-substitution allows to use several name=repl substitution rules separated by

semicolon ’;’. In this case expr will be replaced by the sum of expressions; each term in this sum is produced by
applying one of the substitution rules from semicolon-separated list to the expression expr. This form is useful
for writing the Lagrangian where many particles have similar interaction.

For example, if u,d,s,c,b,t are declared as quark names, their interaction with the gluon may read as

lterm gg*anti(psi)*gamma*lambda*G*psi where

psi=u; psi=d; psi=s; psi=c; psi=b; psi=t.

The equivalent form is

lterm gg*U*gamma*lambda*G*u + gg*D*gamma*lambda*G*d +

gg*U*gamma*lambda*G*u + gg*D*gamma*lambda*G*d +

gg*U*gamma*lambda*G*u + gg*D*gamma*lambda*G*d.

Where-substitution can also be used in let statement. In this case one should use brackets:

let lsub=(expr where wsub=expr1).

Note that in the previous example we have omitted indices. In the next section we shall describe this
LanHEP option in details.
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6 Omitting indices

Physicists usually do not write all possible indices in the Lagrangian terms. LanHEP also allows a user to omit
indices. This feature can simplify introduction of expressions and make them more readable. Compare two
possible forms:

lterm E1^a*gamma^a^b^mu*A^mu*e1^b.

corresponding to geēa(x)γµ
abeb(x)Aµ(x), and

lterm E1*gamma^mu*e1*A^mu.

corresponding to geē(x)γ
µe(x)Aµ(x)). Furthermore, while physicists usually write vector indices explicitly in

the formulas, in LanHEP vector indices also can be omitted:

lterm -i*ee*E1*gamma*e1*A.

Generally speaking, when user omits indices in the expressions, LanHEP faces two problems: which indices
were omitted and how to convolute restored indices.

6.1 Restoring the omitted indices

When the indexed object is declared the corresponding set of indices is assumed. Thus, if the quark q is declared
as

spinor q:(’some quark’, color c3).

its first index is spinor and the second one belongs to the color c3 type. If both indices are omitted in some
expression, LanHEP generates them in the correspondence to order (spinor, color c3). However, if only one
index is written, for example in the form q^a, LanHEP has to recognize whether the index a is of color c3 or
of spinor types.

To solve this problem LanHEP looks up the list of indices omitting order. By default this list is set to

[spinor, color c3, color c8, vector]

The algorithm to restore omitted indices is the following. First, LanHEP assumes that user has omitted
indices which belong to the first type (and corresponding antitype) from this list. Continuing the consideration
of our example with particle q one can see that since this particle is declared having one spinor index (the first
type in the list) LanHEP checks whether the number of indices declared for this object without spinor index
equals to the number of indices written explicitly by user. In our example (when user has written q^a) this is
true. In the following LanHEP concludes that the user omitted spinor index and that explicitly written index
is of color c3 type.

In other cases, when the supposition fails if the user has omitted indices of the first type in the list of indices

omitting order, LanHEP goes to the second step. It assumes that user has omitted indices of first two types
from this list. If this assumption also fails, LanHEP assumes that user has omitted indices of first three types in
the list and so on. At each step LanHEP subtracts the number of indices of these types assumed to be omitted
from the full number of indices declared for the object, and checks whether this number of resting indices equals
to the number of explicitly written indices. If LanHEP fails when the list of indices omitting order is completed,
error message is returned by the program.

Note that if the user would like to omit indices of some type, he must omit all indices of this type (and
antitype) as well as the indices of all types which precede in the list of indices omitting order.

For example, if object Y is declared with one spinor, two vector and three color c8 indices, than

• the form Y^a^b^c^d^e^f means that the user wrote all the indices explicitly;

• the form Y^a^b^c^d^e means that the user omitted spinor index and wrote vector and color c8 ones;

• the form Y^a^b means that the user omitted spinor and color c8 indices and wrote only two vector

ones;

• the form Y means that the user omitted all indices;

• all other forms, involving different number of written indices, are incorrect.
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One can say that indices should be omitted in the direct correspondence with abrupting the list of indices

omitting order from left to right.
One could change the list of indices omitting order types by the statement SetDefIndex. For example, for

default setting it looks like

SetDefIndex(spinor, color c3, color c8, vector).

Each argument in the list is a type of index.

6.2 Convolution of restored indices

Omitted index can be convoluted only with some another omitted index. LanHEP expands the expression
and restore indices in each monomial. LanHEP reads objects in the monomial from the left to the right and
checks whether restored indices are present. If such index appears LanHEP seeks for the restored index of the
appropriate type at the next objects. Note, that the program does not check whether the object with the first
restored index has another restored index of the appropriate type. Thus, if F is declared as let-substitution for
the strength tensor of electromagnetic field (with two vector indices) then expression F*F (as well as F**2) after
processing omitted indices turns to implied form F^mu^nu*F^mu^nu rather than F^mu^mu*F^nu^nu.

This algorithm makes the convolutions to be sensitive to the order of objects in the monomial. Let us look
again to the QED example. Expression E1*gamma*A*e1 (as well as A*e1*gamma*E1) leads to correct result where
vector index of photon is convoluted with the same index of γ-matrix, spinor index of electron is convoluted
with antispinor index of γ-matrix and antispinor index of positron is convoluted with spinor index of γ-matrix.
However the expression e1*E1*A*gamma leads to wrong form e1^a*E1^a*A^mu*gamma^b^c^mu, because the first
antispinor index after electron belongs to positron. Spinor indices of gamma stay free (non-convoluted) since no
more objects with appropriate indices (so, LanHEP will report an error since Lagrangian term is not a scalar).

Note, that in the vertex with two γ-matrices the situation is more ambiguous. Let’s look at the term
corresponding to the electron anomalous magnetic moment ē(x)(γµγν − γνγµ)e(x)Fµν . The correct LanHEP
expression is

e1*(gamma^mu*gamma^nu - gamma^nu*gamma^mu)*E1*F^mu^nu

Here vector indices can’t be omitted, since it lead to the convolution of vector indices of γ-matrices. One can
see also that the form

e1*E1*(gamma^mu*gamma^nu - gamma^nu*gamma^mu)*F^mu^nu

will correspond to the expression ē(x)e(x)Sp(γµγν)Fµν . Here LanHEP has got scalar Lorentz-invariant expres-
sion in the Lagrangian term, so it has no reason to report error.

These examples mean that user should clearly realize how the indices will be restored and convoluted, or he
has to write all indices explicitly.

6.3 Let-substitutions

Other problem arises when the omitted indices stay free, it is a case for the let statement. LanHEP allows only
two ways to avoid ambiguity in the order of indices types: either user specifies all the indices at the name of new
symbol and free indices in the corresponding expression, or he should omit all free indices. In the latter case
the order of indices types is defined by the order of free omitted indices in the first monomial of the expression.
For example if A1 and A2 are vectors and c1 and c2 are spinors, the statement

let d=A1*c1+c2*A2.

declares new object d with two indices, the first is vector index and the second is spinor index according to their
order in the monomial A1*c1. Of course, each monomial in the expression must have the same typeset of free
indices.

6.4 Arrays

The usage of arrays with omitted indices allows us to define matrices conveniently. For example, the declaration
of τ -matrices

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 i
−i 0

)

, τ3 =

(

1 0
0 −1

)

can be written as
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let tau1 = {{0, 1}, {1, 0}}.
let tau2 = {{0,-i}, {i, 0}}.
let tau3 = {{1, 0}, {0,-1}}.

One can see that in such way of declaration a matrix is written ”column by column”.
The declaration of objects with three ‘explicit’ indices can be done using the objects already defined. For

example, when τ -matrices are defined as before, it is easy to define the vector ~τ ≡ (τ1, τ2, τ3) as

let tau = {tau1, tau2, tau3}.
The object tau has three indices, first pair selects the element of the matrix, while the matrix itself is selected
by the third index, i.e. tau^i^j^a corresponds to τa

ij .
On the other hand, the declaration of structure constants of a group is more complicated. Declaring such

an object one should bear in mind that omitting indices implies that in a sequence of components the second
index of an object is changed after the full cycle of the first index, the third index is changed after the full cycle
of the second one, etc. For example, a declaration of the antisymmetrical tensor εabc can read as

let eps = {{{0,0,0}, {0,0,-1}, {0,1,0}},
{{0,0,1}, {0,0,0}, {-1,0,0}},
{{0,-1,0}, {1,0,0}, {0,0,0}}}.

One can easily see that the components are listed here in the following order:

ε111, ε211, ε311, ε121, ε221, ε321, ε131, ... ε233, ε333.

The declaration of more complex objects such as SU(3) structure constants can be made in the same way.

7 Declaration of new index types and indexed objects

7.1 Declaring new groups

Index type is defined by two keywords1: group name and representation name. Thus, color triplet index type
color c3 has group name color and representation name c3.

LanHEP allows user to introduce new group names by the group statement:

group gname.

Here gname is a string constant, which becomes the name of newly declared group.
Representation names for each group name must be declared by the statement

repres gname:(rlist)

where rlist is a comma-separated list of representation names declaration for the already declared group name
gname. Each such declaration has the form either rname or rname/crname. In the first case index which belongs
to the gname rname type can be convoluted with another index of the same type; in the second case index of
gname rname type can be convoluted only with an index of gname crname type.

For example, definition for color SU(3) group with fundamental, conjugated fundamental and adjoint rep-
resentations looks as:

group color:SU(3).

repres color:(c3/c3b,c8).

So, three index types can be used: color c3, color c3b, color c8. The convolution of these indices is
allowed by pairs (color c3, color c3b) and (color c8, color c8) indices.

7.2 Declaring new specials

Specials with indices of user-defined types can be declared by means of special statement:

special name:(islist).

Here name is the name of new symbol, and ilist is a comma-separated list of indices types. For example,
Gell-Mann matrices can be defined as (although color group and its indices types are already defined):

special lambda:(color c3, color c3b, color c8).

To define Dirac’s γ-matrices we can use the command

special gamma:(spinor, cspinor, vector).

1The exception is Lorentz group, corresponding indices types are defined by single keyword.
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7.3 Arrays

Array, i.e. the object with explicit components, can also have the user-defined type of index. In this case generic
form of such object is

{ expr1, expr2 ... ,exprN ; itype }

where N expressions expr1 ... exprN of N components are separated by comma, and itype is an optional index
type. If itype is omitted LanHEP uses default group name wild and index type wild N, where N is a number
of components in the array.

8 Auxiliary statements

8.1 Orthogonal matrices

If some parameters appear to be the elements of the orthogonal matrix such as quark mixing Cabbibo-Kobayashi-
Maskava matrix, one should declare them by the statement

OrthMatrix( {{a11, a12, a13}, {a21, a22, a23}, {a31, a32, a33}} ).

where aij denote the parameters. Such declaration permits LanHEP to reduce expressions which contain these
parameters by taking into account the properties of orthogonal matrices.

Note that this statement has no relation to the arrays; it just declares that these parameters aij satisfy the
correspondent relations. Of course, one can declare further a matrix with these parameters as components by
means of let statement.

8.2 Including files

LanHEP allows the user to divide the input file into several files. To include the file file, the user should use
the statement

read file.

The standard extension ’.mdl’ of the file name may be omitted in this statement.
Another way to include a file is provided by the use statement as

use file.

The use statement reads the file only once, next appearances of this statement with the same argument do
nothing. This function prevents multiple reading of the same file. This form can be used mainly to include
some standard modules, such as declaration of Standard Model particles to be used for writing some extensions
of this model.

8.3 Checking electric charge conservation

LanHEP can check whether the introduced vertices satisfy electric charge conservation law. This option is
available, if the user declares some parameter to denote elementary electric charge (say, ee in QED example),
and than indicate, which particle is a photon by the statement

SetEM(photon, param).

So, in example of Section 1 this statement could be

SetEM(A,ee).

Electric charge of each particle is determined by analyzing its interaction with the photon. LanHEP checks
whether the sum of electric charges of particles in each vertex equals zero.
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9 LaTeX output

LanHEP generates LaTeX output instead of CompHEP model files if user set -tex in the command line to start
LanHEP. Three files are produced: ’varsN.tex’, ’prtclsN.tex’ and ’lgrngN.tex’. The first file contains
names of parameter used in physical model and their values. The second file describes introduced particles,
together with propagators derived from introduced vertices.

The last file lists introduced vertices. LanHEP uses Greece letters µ, ν, ρ... for vector indices, letters a, b, c...
for spinor ones and p, q, r... for color indices (and for indices of other groups, if they were defined).

It is possible to inscribe names for particles and parameters to use them in LaTeX output. It can be done
by the statement

SetTexName([ ident=texname, ... ]).

Here ident is an identifier of particle or parameter, and texname is string constant containing LaTeX command.
Note, that for introducing backslash ’\’ in quoted string constant one should type it twice: ’\\’.

For example, if one has declared neutrino with name n1 (and name for antineutrino N1) than the statement

SetTexName([n1=’\\nu^e’, N1=’\\bar{\\nu}^e’]).

makes LanHEP to use symbols νe and ν̄e for neutrino and antineutrino in LaTeX tables.

10 Running LanHEP

As it was mentioned above, LanHEP can read the model description from the input file prepared by user. To
start LanHEP write the command

lhep filename options

where the possible options are described in the next section. If the filename is omitted, LanHEP prints it’s
prompt and waits for the keyboard input. In the last case, user’s input is copied into the file lhep.log and
can be inspected in the following. To finish the work with LanHEP, type ’quit.’ or simply press ^D (or ^Z

at MS DOS computers).

10.1 Options

Possible options, which can be used in the command line to start LanHEP are:

-OutDir directory Set the directory where output files will be placed.

-InDir directory Set the default directory where to search files, which included by read and use state-
ments.

-tex LanHEP generates LaTeX files instead of CompHEP model tables.

-frc If -tex option is set, forces LanHEP to split 4-fermion and 4-color vertices just as it is made for
CompHEP files.

-texLines num Set number of lines in LaTeX tables to num. After the specified number of lines, LanHEP
continues writing current table on the next page of LaTeX the output. Default value is 40.

-texLineLength num Controls width of the Lagrangian table. Default value is 35, user can vary table
width by changing this parameter.

11 Default objects

When LanHEP starts, it has already declared some frequently used symbols. They are:

• specials gamma and gamma5 which are Dirac’s γ-matrices;

• special moment is replaced by the momentum of the corresponding particle;

• let-substitution deriv is defined as -i*moment;

• group color with indices types c3/c3b and c8;
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• specials lambda and f SU3 which are Gell-Mann matrices and structure constant of SU(3) group;

• tau1, tau2, tau3 are τ -matrices τ1, τ2, τ3;

• tau is a vector ~τ = (τ1, τ2, τ3);

• taup and taum are matrices τ± = (τ1 ± iτ2)/
√

2;

• taupm is a vector (τ+, τ3, τ−);

• eps is the antisymmetrical tensor ε (ε123 = 1);

• Tau1, Tau2, Tau3 are generators of SU(2) group adjoint representation (3-dimensional analog of τ -
matrices) T 1, T 2, T 3 with commutative relations [Ti, Tj] = −iǫijkTk:

T 1 =
1√
2





0 −1 0
−1 0 1

0 1 0



 , T 2 =
1√
2





0 i 0
−i 0 −i
0 i 0



 , T 3 =





1 0 0
0 0 0
0 0 −1



 ;

• Taup and Taum corresponds to T± = (T 1 ± iT 2)/
√

2;

• Taupm is a vector ~T = (T+, T 3, T−).
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12 Standard Model

In this chapter we give an example of the LanHEP input file introducing the Lagrangian of the Standard Model
in the t’Hooft-Feynman gauge.

We start the description of the SM Lagrangian from the declaration of all parameters, see Fig. 3. The
comments which follow each parameter explain its meaning.

model ’Standard Model’/4.

parameter

EE = 0.31333:’Elementary electric charge’,

GG = 1.117:’Strong coupling constant (Z point) (PDG-94)’,

SW = 0.4740:’sin of the Weinberg angle (PDG-94,"on-shell")’,

s12 = 0.221:’Parameter of C-K-M matrix (PDG-94)’,

s23 = 0.040:’Parameter of C-K-M matrix (PDG-94)’,

s13 = 0.0035:’Parameter of C-K-M matrix (PDG-94)’.

parameter CW = sqrt(1-SW**2) : ’cos of the Weinberg angle’.

parameter

c12 = sqrt(1-s12**2):’parameter of C-K-M matrix’,

c23 = sqrt(1-s23**2):’parameter of C-K-M matrix’,

c13 = sqrt(1-s13**2):’parameter of C-K-M matrix’.

parameter

Vud = c12*c13:’C-K-M matrix element’,

Vus = s12*c13:’C-K-M matrix element’,

Vub = s13:’C-K-M matrix element’,

Vcd = (-s12*c23-c12*s23*s13):’C-K-M matrix element’,

Vcs = (c12*c23-s12*s23*s13):’C-K-M matrix element’,

Vcb = s23*c13:’C-K-M matrix element’,

Vtd = (s12*s23-c12*c23*s13):’C-K-M matrix element’,

Vts = (-c12*s23-s12*c23*s13):’C-K-M matrix element’,

Vtb = c23*c13:’C-K-M matrix element’.

OrthMatrix( {{Vud,Vus,Vub}, {Vcd,Vcs,Vcb}, {Vtd,Vts,Vtb}} ).

Figure 3: Standard Model: parameters.

Than we go to input particles of the model. These are vector gauge bosons, fermions which are leptons and
quarks of three generations, and scalar Higgs boson (see Fig. 4).

The next section of the input file (Fig. 5) introduces some useful let-substitutions. First, we enter doublets
of leptons and quarks; for the quarks we supply also doublets rotated by CKM matrix.

In the textbooks the physical gauge bosons W±, Z, A are defined through the SU(2) gauge triplet W a (a =
1, 2, 3) and U(1) field B as

W± = (W 1 ∓ iW 2)/
√

2,

Z = W 3 cos θW −B sin θW ,

A = W 3 sin θW +B cos θW ,

where θW is the Weinberg angle. If we would like to use the fields W a and B we have to declare them (as
let-substitutions) through the physical fields W±, Z and A by inverting these relations2. At last, we define EW
charges g = e/ sin θW and g1 = e/ cos θW .

Now we can enter the Lagrangian terms. First, we define the EW gauge bosons Lagrangian (see Fig. 6) in
the form

LEW
G = −1

4
FµνFµν − 1

4
W aµνW a

µν ,

where
Fµν = ∂µBν − ∂νBµ and W a

µν = ∂µW
a
ν − ∂νW

a
µ − gεabcW b

µW
c
ν ,

and for the gluon Lagrangian we use the form

LQCD
G = −1

4
GaµνGa

µν ,

2Note, that B1 stands for the B gauge field since B is already defined as b-antiquark.
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vector

A/A: (photon, gauge),

Z/Z: (’Z boson’, mass MZ = 91.187, width wZ = 2.502, gauge),

G/G: (gluon, color c8, gauge),

’W+’/’W-’: (’W boson’, mass MW = MZ*CW, width wW = 2.094, gauge).

spinor

n1:(neutrino,left), e1:(electron, mass Me = 0.000511),

n2:(’mu-neutrino’,left), e2:(muon, mass Mm = 0.1057),

n3:(’tau-neutrino’,left), e3:(’tau-lepton’, mass Mt = 1.777).

spinor

u:(’u-quark’,color c3),

d:(’d-quark’,color c3),

c:(’c-quark’,color c3, mass Mc = 1.300),

s:(’s-quark’,color c3, mass Ms = 0.200),

t:(’t-quark’,color c3, mass Mtop = 170, width wtop = 1.442),

b:(’b-quark’,color c3, mass Mb = 4.300 ).

scalar H/H:(Higgs, mass MH = 200, width wH = 1.461).

Figure 4: Standard Model: particles.

let l1={n1,e1}, L1={N1,E1}.
let l2={n2,e2}, L2={N2,E2}.
let l3={n3,e3}, L3={N3,E3}.
let q1={u,d}, Q1={U,D}, q1a={u,Vud*d+Vus*s+Vub*b}, Q1a={U,Vud*D+Vus*S+Vub*B}.
let q2={c,s}, Q2={C,S}, q2a={c,Vcd*d+Vcs*s+Vcb*b}, Q2a={C,Vcd*D+Vcs*S+Vcb*B}.
let q3={t,b}, Q3={T,B}, q3a={t,Vtd*d+Vts*s+Vtb*b}, Q3a={T,Vtd*D+Vts*S+Vtb*B}.
let B1= -SW*Z+CW*A, W3=CW*Z+SW*A, W1=(’W+’+’W-’)/Sqrt2, W2 = i*(’W+’-’W-’)/Sqrt2.

let WW={’W+’, W3, ’W-’}, WWc={’W-’, W3, ’W+’}, WW1={W1, W2, W3}.
let gh1=(’W+.c’+’W-.c’)/Sqrt2, gh2= i*(’W+.c’-’W-.c’)/Sqrt2, gh3= CW*’Z.c’+SW*’A.c’,

gh={gh1,gh2,gh3}.
let Gh1 = (’W+.C’+’W-.C’)/Sqrt2, Gh2=i*(’W+.C’-’W-.C’)/Sqrt2, Gh3= CW*’Z.C’+SW*’A.C’,

Gh={Gh1,Gh2,Gh3}.
let g=EE/SW, g1=EE/CW.

Figure 5: Standard Model: useful substitutions.

where
Ga

µν = ∂µG
a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

Ga
µ is the gluon field, gs is a strong interaction coupling.

let tB^mu^nu=deriv^mu*B1^nu-deriv^nu*B1^mu.

let tW^mu^nu^a=deriv^mu*WW1^nu^a - deriv^nu*WW1^mu^a - g*eps^a^b^c*WW1^mu^b*WW1^nu^c.

let tG^mu^nu^a=deriv^mu*G^nu^a - deriv^nu*G^mu^a - i*GG*f^a^b^c*G^mu^b*G^nu^c.

lterm -tB**2/4-tW**2/4-tG**2/4.

Figure 6: Standard Model: gauge field Lagrangians

The next step is the interaction of fermions with gauge bosons (Fig. 7). First, we define interaction of
left-handed fermions with W a and B fields, taking into account CKM mixing of quarks; the corresponding term
is

ψ̄γµ 1 − γ5

2

(

i∂µ − g

2
τaW a

µ − g1Y Bµ

)

ψ,

where ψ are left-handed lepton and rotated by CKM matrix quark doublets, Y is a hypercharge. Than we
declare the right-hand fermions interaction with B field; in this case we can take quarks without CKM mixing,
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since the interaction of quarks with Z-boson and photon is flavor-diagonal. Lagrangian term is

ψ̄γµ 1 + γ5

2
(i∂µ − g1Y Bµ)ψ,

where ψ are right-handed lepton and quark singlets.

lterm anti(psi)*gamma*(1-g5)/2*(i*deriv-g*taupm*WW/2-Y*g1*B1)*psi where

psi=l1, Y= -1/2;

psi=l2, Y= -1/2;

psi=l3, Y= -1/2;

psi=q1, Y=1/6;

psi=q2, Y=1/6;

psi=q3, Y=1/6.

lterm anti(psi)*gamma*(1+g5)/2*(i*deriv-Y*g1*B1)*psi

where

psi=e1, Y= -1;

psi=e2, Y= -1;

psi=e3, Y= -1;

psi=u, Y=2/3;

psi=c, Y=2/3;

psi=t, Y=2/3;

psi=d, Y=-1/3;

psi=s, Y=-1/3;

psi=b, Y=-1/3.

Figure 7: Standard Model: gauge interaction of fermions.

The next step is the introduction of the Higgs sector: interaction of Higgs doublet expressed through physical
field H and unphysical goldstone fields Zf ,W

±
f as

Φ =

(

−iW+

f
1√
2
(v +H + iZf)

)

,

where vacuum expectation value is v = 2MW/g. Unphysical goldstone fields read in LanHEP as ’W+.f’,

’W-.f’, ’Z.f’. In Fig. 8 we enter self-interaction terms and interaction of this field with gauge bosons as:

LHiggs = (DµΦ)∗(DµΦ) + 2λ(Φ∗Φ − v2/2)2,

where Dµ = ∂µ + i g
2
τaW a

µ + i g1

2
Bµ, λ =

g2M2

H

16M2

W

.

let phi = { -i*’W+.f’, (vev(2*MW/EE*SW)+H+i*’Z.f’)/Sqrt2 },
Phi = { i*’W-.f’, (vev(2*MW/EE*SW)+H-i*’Z.f’)/Sqrt2 }.

lterm -2*lambda*(pp*PP+v**2/2)**2

where lambda=(EE*MH/(MW*SW))**2/16, v=2*MW*SW/EE.

lterm (DPhi)*(Dphi) where

DPhi = (deriv^mu-i*g1/2*B1^mu)*Phi^a - i*g/2*taupm^a^b^c*WWc^mu^c*Phi^b,

Dphi = = (deriv^mu+i*g1/2*B1^mu)*phi^a + i*g/2*taupm^a^b^c*WWc^mu^c*phi^b.

Figure 8: Standard Model: self-interaction of Higgs field and its interaction with gauge bosons.

Yukawa terms are shown in Fig. 9. First, we generate lepton masses with terms

Lℓ
Y = − gMℓ√

2MW

(

ψ̄a 1 + γ5

2
ψΦa + ψ̄

1 − γ5

2
ψaΦ∗a

)

,

where ψa is lepton doublet, ψ is down lepton and Mℓ is its mass. The term is applied to the leptons of second
and third generations (electron is massless in this model).
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Next we do the same thing with down quarks. Here we must take into account the CKM mixing, so the
previous formula takes the form

LQd

Y = −
gM ij

q√
2MW

(

ψ̄a
i

1 + γ5

2
ψjΦ

a + ψ̄i

1 − γ5

2
ψa

j Φ∗a

)

,

where M ij
q = diag(Md,Ms,Mb)

ikU jk, U being the CKM matrix; ψa
i and ψi are quark doublets and down

singlets, indices i, j numerate generations.
At last we generate masses of upper quarks with the terms

LQu

Y = − gMq√
2MW

(

ψ̄a 1 + γ5

2
iτab

2 ψΦ∗b + ψ̄
1 − γ5

2
ψaiτab

2 Φb

)

for three generations of quarks with Mq = (Mu,Mc,Mt).

lterm -M/MW/Sqrt2*g*(anti(pl)*(1+g5)/2*pr*phi + anti(pr)*(1-g5)/2*pl*Phi ) where

M=Mm, pl=l2, pr=e2;

M=Mt, pl=l3, pr=e3.

lterm -M/MW/Sqrt2*g*(anti(pl)*(1+g5)/2*pr*phi + anti(pr)*(1-g5)/2*pl*Phi ) where

M=Vud*0, pl=q1a, pr=d; % here and below 0 stands for Md

M=Vus*Ms, pl=q1a, pr=s;

M=Vub*Mb, pl=q1a, pr=b;

M=Vcd*0, pl=q2a, pr=d;

M=Vcs*Ms, pl=q2a, pr=s;

M=Vcb*Mb, pl=q2a, pr=b;

M=Vtd*0, pl=q3a, pr=d;

M=Vts*Ms, pl=q3a, pr=s;

M=Vtb*Mb, pl=q3a, pr=b.

lterm -M/MW/Sqrt2*g*(anti(pl)*(1+g5)/2*i*tau2*pr*Phi + anti(pr)*(1-g5)/2*i*pl*tau2*phi )

where

M=0, pl=q1a, pr=u;

M=Mc, pl=q2a, pr=c;

M=Mtop, pl=q3a, pr=t.

Figure 9: Standard Model: Yukawa terms.

The final stage is the introduction of gauge fixing terms and terms with Faddev-Popov ghosts.
Gauge fixing terms in the t’Hooft-Feynman gauge read as

LGF = −1

2
(∂µA

µ)2 − 1

2
(∂µG

µ
a)2 − (∂µW

+µ +MWW+

f )(∂µW
−µ +MWW−

f ) − 1

2
(∂µZ

µ +MZZf )2,

the corresponding LanHEP code is shown in Fig. 10.

lterm -1/2*(deriv*A)**2.

lterm -1/2*(deriv*G)**2.

lterm -1/2*(2*(deriv*’W+’+MW*’W+.f’)*(deriv*’W-’+MW*’W-.f’) +

(deriv*Z+MW/CW*’Z.f’)**2).

Figure 10: Standard Model: gauge fixing terms.

The interaction of ghost fields reads as (we omit here bilinear terms, since they are not treated by CompHEP):

LG
FP = igsf

abcC̄a
GG

b
µ∂

µCc
G

for gluons, and
LEW

FP = −gεabc ∗ Ca
WW b

µC̄
c
W

for the interaction of EW ghosts with gauge bosons, and finally

LGS
FP = − eMW

2 sin θW

(

(H + iZf)(C̄−C+ + C̄+C−) +
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+HC̄ZCZ/ cos2 θW − 2iZfC̄+C−
)

+

+
ieMW

2 cos θW sin θW

(

W+

f ((1 − 2 sin2 θW )C̄−CZ + C−C̄Z + 2 sin θW cos θW C̄−CA) −

−W−
f ((1 − 2 sin2 θW )C̄+CZ + C+C̄Z + 2 sin θW cos θW C̄+CA)

)

,

Here Ca
G (a=1..8) are ghost fields corresponding to gluon, Ca

W (a=1..3) are ghost fields of SU(2) gauge
bosons, CB corresponds to U(1) gauge field and

C± = (C1
W ∓ C2

W )/
√

2,

CZ = C3
W cos θW − CB sin θW ,

CA = C3
W sin θW + CB cos θW .

The corresponding part of LanHEP input file is shown in Fig. 11.

lterm i*GG*f*ccghost(G)*G*deriv*ghost(G).

lterm i*g*eps*Gh*WW*deriv*gh.

lterm -1/2*(2*(deriv*’W+’+MW*’W+.f’)*(deriv*’W-’+MW*’W-.f’) +

(deriv*Z+MW/CW*’Z.f’)**2).

lterm -MW*EE/2/SW*((H+i*’Z.f’)*(’W-.C’*’W+.c’ + ’W+.C’*’W-.c’)

+H*’Z.C’*’Z.c’/CW**2-2*i*’Z.f’*’W+.C’*’W-.c’). lterm

i*EE*MW/2/CW/SW*(’W+.f’*(’W-.C’*’Z.c’*(1-2*SW**2)+’W-.c’*’Z.C’

+2*CW*SW*’W-.C’*’A.c’) -

’W-.f’*(’W+.C’*’Z.c’*(1-2*SW**2)+’W+.c’*’Z.C’

+2*CW*SW*’W+.C’*’A.c’)).

Figure 11: Standard Model: terms with Faddev-Popov ghost fields.

To complete the description of Standard Model, we prescribe also LaTeX names for particles and parameters,
see Fig. 12.

SetTexName([u=u, U=’\\bar{u}’, d=d, D=’\\bar{d}’]).
SetTexName([s=s, S=’\\bar{s}’, b=b, B=’\\barb’]).
SetTexName([c=c, C=’\\bar{c}’, t=t, T=’\\bar{t}’]).
SetTexName([e1=e, E1=’\\bar{e}’, n1=’\\nu^e’, N1=’\\bar{\\nu}^e’]).
SetTexName([e2=’\\mu’, E2=’\\bar{\\mu}’, n2=’\\nu^\\mu’, N2=’\\bar{\\nu}^\\mu’]).
SetTexName([e3=’\\tau’, E3=’\\bar{\\tau}’, n3=’\\nu^\\tau’, N3=’\\bar{\\nu}^\\tau’]).
SetTexName([EE=e, GG=’g s’, SW=’s w’, CW=’c w’, MZ=’M Z’]).

SetTexName([Me=’M e’, Mm=’M \\mu’, Mt=’M \\tau’, Ms=’M s’, Mc=’M c’, Mb=M b, Mtop=M t]).

Figure 12: Standard Model: LaTeX names for particles and parameters.
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Appendix

A Processing 4-color vertices

CompHEP Lagrangian tables don’t describe explicitly color structure of a vertex. If color particles present in
the vertex, the following implicit convolutions are assumed (supposing p, q, r are color indices of particles in the
vertex):

• δpq for two color particles A1
p, A

2
q;

• λr
pq for three particles, which are color triplet, antitriplet and octet;

• fpqr for three color octets.

Other color structures are forbidden in CompHEP.
So, to introduce the 4-gluon vertex fpqrGq

µG
r
νf

pstGs
µG

t
ν one should split this 4-legs vertex into 3-legs vertices

fpqrGq
µG

r
νX

p
µν :

G

G

G

G

→
G

G

X

G

G

+

G G

X

G G

+

G G

X

G G

Here the field Xp
µν is Lorentz tensor and color octet, and this field also has constant propagator. If gluon

name in CompHEP is ’G’, one can use name ’G.t’ for this tensor particle; its indices denoted as ’m ’ and
’M ’ (’ ’ is the number of the particle in table item).

B Feynman rules for the Standard Model

Here we present the tables generated by LanHEP in LaTeX format for the Standard Model (see Section 12).

Table 2: Standard model: particles.

P aP Name Spin EM charge Color 2-legs vertex Comment
Aµ Aν photon 1 0 1 −pρ

1p
ρ
1g

µν gauge
Zµ Zν Z boson 1 0 1 − 1

c2
w

(

c2wp
ρ
1p

ρ
1g

µν −MW 2 · gµν
)

gauge

Gµp Gνq gluon 1 0 8 −pρ
1p

ρ
1g

µνδpq gauge
W+

µ W−
ν W boson 1 1 1 −gµν

(

pρ
1p

ρ
1 −MW 2

)

gauge
νe

a ν̄e
b neutrino 1/2 0 1 − 1

2
pµ
1

(

γµ
ab − γµ

acγ
5
cb

)

left
ea ēb electron 1/2 −1 1 −pµ

1γ
µ
ab

νµ
a ν̄µ

b mu-neutrino 1/2 0 1 − 1

2
pµ
1

(

γµ
ab − γµ

acγ
5
cb

)

left
µa µ̄b muon 1/2 −1 1 − (pµ

1γ
µ
ab +Mµ · δab)

ντ
a ν̄τ

b tau-neutrino 1/2 0 1 − 1

2
pµ
1

(

γµ
ab − γµ

acγ
5
cb

)

left
τa τ̄ b tau-lepton 1/2 −1 1 − (pµ

1γ
µ
ab +Mτ · δab)

uap ūbq u-quark 1/2 2

3
3 −pµ

1δpqγ
µ
ab

dap d̄bq d-quark 1/2 − 1

3
3 − 1

2
pµ
1δpq2γ

µ
ab

cap c̄bq c-quark 1/2 2

3
3 −δpq (pµ

1γ
µ
ab +Mc · δab)

sap s̄bq s-quark 1/2 − 1

3
3 − 1

2
δpq (2pµ

1γ
µ
ab + 2Ms · δab)

tap t̄bq t-quark 1/2 2

3
3 −δpq (pµ

1γ
µ
ab +Mt · δab)

bap b̄bq b-quark 1/2 − 1

3
3 − 1

2
δpq (2pµ

1γ
µ
ab + 2Mb · δab)

H H Higgs 0 0 1 −
(

MH2 − pµ
1p

µ
1

)
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Table 3: Standard Model: parameters.

Parameter Value Comment
EE 0.31333 Electromagnetic coupling constant (1/128)
GG 1.117 Strong coupling constant (Z point) (PDG-94)
SW 0.474 sin of the Weinberg angle (PDG-94,”on-shell”)
s12 0.221 Parameter of C-K-M matrix (PDG-94)
s23 0.04 Parameter of C-K-M matrix (PDG-94)
s13 0.0035 Parameter of C-K-M matrix (PDG-94)
CW Sqrt(1-SW**2) cos of the Weinberg angle
c12 Sqrt(1-s12**2) parameter of C-K-M matrix
c23 Sqrt(1-s23**2) parameter of C-K-M matrix
c13 Sqrt(1-s13**2) parameter of C-K-M matrix
Vud c12*c13 C-K-M matrix element
Vus s12*c13 C-K-M matrix element
Vub s13 C-K-M matrix element
Vcd -s12*c23-c12*s23*s13 C-K-M matrix element
Vcs c12*c23-s12*s23*s13 C-K-M matrix element
Vcb s23*c13 C-K-M matrix element
Vtd s12*s23-c12*c23*s13 C-K-M matrix element
Vts -c12*s23-s12*c23*s13 C-K-M matrix element
Vtb c23*c13 C-K-M matrix element
MZ 91.187 mass of Z boson
wZ 2.502 width of Z boson
MW MZ*CW mass of W boson
wW 2.094 width of W boson
Me 0.000511 mass of electron
Mm 0.1057 mass of muon
Mt 1.777 mass of tau-lepton
Mc 1.3 mass of c-quark
Ms 0.2 mass of s-quark
Mtop 170 mass of t-quark
wtop 1.442 width of t-quark
Mb 4.3 mass of b-quark
MH 200 mass of Higgs
wH 1.461 width of Higgs
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Fields in the vertex Variational derivative of Lagrangian by fields

Gµp Gνq Gρr gsfpqr

(

pν
3g

µρ − pρ
2g

µν − pµ
3g

νρ + pρ
1g

µν + pµ
2g

νρ − pν
1g

µρ
)

Gµp Gνq Gρr Gσs g2
s

(

gµρgνσfpqtfrst − gµσgνρfpqtfrst + gµνgρσfprtfqst

+gµνgρσfpstfqrt − gµσgνρfprtfqst − gµρgνσfpstfqrt

)

W+
µ W−

ν Zρ − cwe
sw

(

pν
1g

µρ − pρ
1g

µν − pµ
2 g

νρ + pρ
2g

µν + pµ
3g

νρ − pν
3g

µρ
)

Aµ W+
ν W−

ρ −e
(

pρ
2g

µν − pµ
2g

νρ − pν
3g

µρ + pµ
3g

νρ + pν
1g

µρ − pρ
1g

µν
)

W+
µ W−

ν Zρ Zσ − c2

we2

s2
w

(

2gµνgρσ − gµρgνσ − gµσgνρ
)

Aµ W+
ν W−

ρ Zσ − cwe2

sw

(

2gµσgνρ − gµνgρσ − gµρgνσ
)

Aµ Aν W+
ρ W−

σ −e2
(

2gµνgρσ − gµρgνσ − gµσgνρ
)

W+
µ W+

ν W−
ρ W−

σ
e2

s2
w

(

2gµνgρσ − gµσgνρ − gµρgνσ
)

ν̄e
a νe

b Zµ − 1

4

e
cwsw

(

γµ
ab − γµ

acγ
5
cb

)

ν̄e
a eb W+

µ − 1

4

e
√

2

sw

(

γµ
ab − γµ

acγ
5
cb

)

ēa νe
b W−

µ − 1

4

e
√

2

sw

(

γµ
ab − γµ

acγ
5
cb

)

ēa eb Zµ
1

4

e
cwsw

(

− 4s2wγ
µ
ab + γµ

ab − γµ
acγ

5
cb

)

ēa eb Aµ eγµ
ab

ν̄µ
a νµ

b Zµ − 1

4

e
cwsw

(

γµ
ab − γµ

acγ
5
cb

)

ν̄µ
a µb W+

µ − 1

4

e
√

2

sw

(

γµ
ab − γµ

acγ
5
cb

)

µ̄a νµ
b W−

µ − 1

4

e
√

2

sw

(

γµ
ab − γµ

acγ
5
cb

)

µ̄a µb Zµ
1

4

e
cwsw

(

− 4s2wγ
µ
ab + γµ

ab − γµ
acγ

5
cb

)

µ̄a µb Aµ eγµ
ab

ν̄τ
a ντ

b Zµ − 1

4

e
cwsw

(

γµ
ab − γµ

acγ
5
cb

)

ν̄τ
a τb W+

µ − 1

4

e
√

2

sw

(

γµ
ab − γµ

acγ
5
cb

)

τ̄a ντ
b W−

µ − 1

4

e
√

2

sw

(

γµ
ab − γµ

acγ
5
cb

)

τ̄a τb Zµ
1

4

e
cwsw

(

− 4s2wγ
µ
ab + γµ

ab − γµ
acγ

5
cb

)

τ̄a τb Aµ eγµ
ab

ūap ubq Zµ − 1

12

e
cwsw

δpq

(

− 8s2wγ
µ
ab + 3γµ

ab − 3γµ
acγ

5
cb

)

ūap ubq Aµ − 2

3
eδpqγ

µ
ab

ūap dbq W+
µ − 1

4

e
√

2V ud
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

ūap sbq W+
µ − 1

4

e
√

2V us
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

ūap bbq W+
µ − 1

4

e
√

2V ub
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

d̄ap ubq W−
µ − 1

4

e
√

2V ud
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

d̄ap dbq Zµ
1

12

e
cwsw

δpq

(

− 4s2wγ
µ
ab + 3γµ

ab − 3γµ
acγ

5
cb

)

d̄ap dbq Aµ
1

6
eδpq2γ

µ
ab

s̄ap ubq W−
µ − 1

4

e
√

2V us
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

s̄ap sbq Zµ
1

12

e
cwsw

δpq

(

− 4s2wγ
µ
ab + 3γµ

ab − 3γµ
acγ

5
cb

)

s̄ap sbq Aµ
1

6
eδpq2γ

µ
ab

b̄ap ubq W−
µ − 1

4

e
√

2V ub
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

b̄ap bbq Zµ
1

12

e
cwsw

δpq

(

− 4s2wγ
µ
ab + 3γµ

ab − 3γµ
acγ

5
cb

)
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Fields in the vertex Variational derivative of Lagrangian terms by fields
b̄ap bbq Aµ

1

6
eδpq2γ

µ
ab

c̄ap cbq Zµ − 1

12

e
cwsw

δpq

(

− 8s2wγ
µ
ab + 3γµ

ab − 3γµ
acγ

5
cb

)

c̄ap cbq Aµ − 2

3
eδpqγ

µ
ab

c̄ap dbq W+
µ − 1

4

e
√

2V cd
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

c̄ap sbq W+
µ − 1

4

e
√

2V cs
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

c̄ap bbq W+
µ − 1

4

e
√

2V cb
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

d̄ap cbq W−
µ − 1

4

e
√

2V cd
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

s̄ap cbq W−
µ − 1

4

e
√

2V cs
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

b̄ap cbq W−
µ − 1

4

e
√

2V cb
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

t̄ap tbq Zµ − 1

12

e
cwsw

δpq

(

− 8s2wγ
µ
ab + 3γµ

ab − 3γµ
acγ

5
cb

)

t̄ap tbq Aµ − 2

3
eδpqγ

µ
ab

t̄ap dbq W+
µ − 1

4

e
√

2V td
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

t̄ap sbq W+
µ − 1

4

e
√

2V ts
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

t̄ap bbq W+
µ − 1

4

e
√

2V tb
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

d̄ap tbq W−
µ − 1

4

e
√

2V td
sw

δpq

(
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acγ
5
cb
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s̄ap tbq W−
µ − 1

4

e
√

2V ts
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

b̄ap tbq W−
µ − 1

4

e
√

2V tb
sw

δpq

(

γµ
ab − γµ

acγ
5
cb

)

ūap ubq Gµr gsγ
µ
abλ

r
pq

d̄ap dbq Gµr gsγ
µ
abλ

r
pq

c̄ap cbq Gµr gsγ
µ
abλ

r
pq

s̄ap sbq Gµr gsγ
µ
abλ

r
pq

t̄ap tbq Gµr gsγ
µ
abλ

r
pq

b̄ap bbq Gµr gsγ
µ
abλ

r
pq

ūap sbq W+

F
1

4

ieMs

√
2V us

MWsw
δpq

(

δab + γ5
ab

)

s̄ap sbq H − 1

2

eMs

MWsw
δabδpq

s̄ap sbq ZF − 1

2

ieMs

MWsw
δpqγ

5
ab

s̄ap ubq W−
F − 1

4

ieMs

√
2V us

MWsw
δpq

(

δab − γ5
ab

)

ūap bbq W+

F
1

4

ieMb

√
2V ub

MWsw
δpq

(

δab + γ5
ab

)

b̄ap bbq H − 1

2

eMb

MWsw
δabδpq

b̄ap bbq ZF − 1

2

ieMb

MWsw
δpqγ

5
ab

b̄ap ubq W−
F − 1

4

ieMb

√
2V ub

MWsw
δpq

(

δab − γ5
ab

)

c̄ap sbq W+

F
1

4

ie
√

2V cs
MWsw

δpq

(

Msδab +Msγ
5
ab −Mcδab +Mcγ

5
ab

)

s̄ap cbq W−
F − 1

4

ie
√

2V cs
MWsw

δpq

(

Msδab −Msγ
5
ab −Mcδab −Mcγ

5
ab

)

c̄ap bbq W+

F
1

4

ie
√
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MWsw

δpq

(

Mbδab +Mbγ
5
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5
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)
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F − 1

4

ie
√
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MWsw

δpq

(

Mbδab −Mbγ
5
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5
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F
1

4

ie
√

2V ts
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(
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5
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)
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Fields in the vertex Variational derivative of Lagrangian by fields
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ie
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5
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(
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(
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(
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(
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(
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(
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cwe
sw
pµ
1

Aµ C̄W+ CW− epµ
2

W+
µ C̄W− CZ cwe

sw
pµ
2

C̄W+ W−
µ CZ − cwe

sw
pµ
1

CZ W+
µ C̄W− epµ

3

CZ C̄W+ W−
µ −epµ

2

H CW+ C̄W− − 1

2

eMW
sw

H C̄W+ CW− − 1

2

eMW
sw
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CW+ C̄W− ZF − 1

2

ieMW
sw

C̄W+ CW− ZF
1

2

ieMW
sw

H C̄Z CZ − 1

2

eMW
c2

wsw

W+

F C̄W− CZ 1

2

ieMW
cwsw

(

− 2s2w
)

W+

F CW− C̄Z 1

2

ieMW
cwsw

CZ W+

F C̄W− ieMW

C̄W+ W−
F CZ − 1

2

ieMW
cwsw

(

− 2s2w
)

CW+ W−
F C̄Z − 1

2

ieMW
cwsw

CZ C̄W+ W−
F −ieMW
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