
Docker Container Manager: A Simple Toolkit for Isolated 
Work with Shared Computational, Storage, and Network 
Resources

S P Polyakov1, A P Kryukov and A P Demichev

Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University 
(SINP MSU), 1(2), Leninskie gory, GSP-1, Moscow 119991, Russian Federation
1 s.p.polyakov@gmail.com

Abstract. We present a simple set of command line interface tools called Docker Container
Manager (DCM) that allow users to create and manage Docker containers with preconfigured
SSH access while keeping the users isolated from each other and restricting their access to the
Docker features that could potentially disrupt the work of the server. Users can access DCM
server via SSH and are automatically redirected to DCM interface tool. From there, they can
create new containers, stop, restart, pause, unpause, and remove containers and view the status
of the existing containers. By default, the containers are also accessible via SSH using the same
private key(s) but through different server ports. Additional publicly available ports can be
mapped to the respective ports of a container, allowing for some network services to be run
within it.  The containers are started from read-only filesystem images. Some initial images
must be provided by the DCM server administrators, and after containers are configured to
meet one's needs, the changes can be saved as new images. Users can see the available images
and remove their own images.  DCM server administrators are provided with commands to
create and delete users. All commands were implemented as Python scripts. The tools allow to
deploy and debug medium-sized distributed systems for simulation in different fields on one or
several local computers.

1.  Introduction
If we want to let several users share access to computational, storage, and network resources of a
server, we can use several approaches. The most simple one is to let them log in to the server directly.
It  imposes no overhead, but the server administrators have to configure the server and install  any
software the users need but cannot install without privileges. This becomes particularly problematic if
two or more users need different versions of the same software. Another approach is to give users
privileged access to virtual machines. Virtual machines can be configured independently and can even
use different operating systems (OS), but the overhead may be significant. Container virtualization [1]
provides a middle ground between these two approaches and combines many of their benefits.

We present a set of tools for container virtualization platform Docker that allows users to create
and  manage  their  own  Docker  containers  (analogs  of  virtual  machines)  with  preconfigured  SSH
access. The users can configure containers, install any software compatible with the server OS kernel,
and run network services and computational programs, including microservices. This allows to deploy
and debug medium-sized distributed systems that can be used for simulation in different fields.



The rest of the paper is organized as follows: Section 2 outlines some possibilities of container
virtualization and features of Docker. Section 3 presents the Docker Container Manager (DCM) toolkit
we developed and describes its functionality. Section 4 discusses the security limitations of the tools.
Section 5 concludes the paper and outlines some possibilities for further development of the tools.

2.  Container virtualization and Docker
Container virtualization is an OS feature that allows to use the same OS kernel to run multiple isolated
user-space  instances  called  containers.  It  was  developed  from  Linux  chroot  mechanism  [2]  that
allowed to change apparent root directory for a process and its children. Unlike full virtualization,
container  virtualization  does  not  allow containers  to  use  different  operating  systems.  But  it  does
provide isolation between the processes, allowing each to use its own set of libraries and installed
software without dependencies conflict, and imposes relatively small overhead [3]. Many container
virtualization methods use copy-on-write technique [4]: resources used by two or more containers are
not copied until one of the containers needs to modify it. Thanks to it, a server can run or store large
number of containers.

Docker  is  a  rapidly  developing  and  very  popular  container  virtualization  platform for  Linux.
Docker  uses  copy-on-write  technique:  file  system of  a  Docker  container  is  based on  a  read-only
image; changes made in a running container can be saved to a new image, resulting in an additional
layer. Docker provides a number of tools for creating, monitoring, and managing containers, as well as
building images, sharing them via repositories and looking for the images created by other users.

A server administrator can give users access to containers started for them, but if we want users to
be able to leverage more of the Docker features, we could let them manage containers on their own,
save changes to new images, start new containers from their own images, discard the containers they
no longer  need  and so  on.  However,  giving  users  full  access  to  Docker  capabilities  on  a  server
amounts to giving them unrestricted access to the server. In particular, volumes mechanism allows to
map any host directory to a container directory (so the users will be able to modify anything from the
container they mapped a host root directory to); containers may also be given privileges to access
devices of the host. Therefore, to let users create their own containers we need to restrict their access
to Docker commands to prevent them from accidentally disrupting the work of the server. Imposing
such restrictions  is  one  of  the  purposes  of  the  toolkit  presented  in  this  paper,  Docker  Container
Manager.

3. Docker Container Manager
Docker Container Manager (DCM) is a set of tools which has three primary purposes:
∙ to allow users to create Docker containers on a server, configure them and save the changes;
∙  to  let  users  work  with  the  containers  remotely,  using  the  computational,  storage,  and  network
resources of the server;
∙ to isolate users from each other and restrict their access to the Docker features that could potentially
disrupt the work of the server.

DCM has a simple command-line interface accessible by SSH: when new DCM users are created,
their access to the server is configured to redirect them to DCM interface as they log in. The interface
allows users  to  execute  a  simplified set  of  Docker  commands,  with DCM keeping track of  their
containers and images to make sure only owners can change or see them.

After a container is created, DCM interface informs the user about the server port that can be used
to connect to the container by SSH. The interface is not needed to connect to the container and work
with it.

The following subsections give the overview of DCM commands in more detail.



3.1. Creating containers

DCM users can create a container using create command. In its most basic form the command takes
one argument, an image to create the container from. DCM then invokes a Docker command run with
the options that ensure the following:
∙ port 22 (SSH) of the container is mapped to a random port of the server (the port number is also used
as the container ID);
∙ two storage directories assigned to the user on the server are mapped to home directories /root and
/home/<user> of the container.
As a result, the user can access the container by SSH using their own private key both as regular user
and as root (the copies of the public key are placed to their storage directories when the DCM user
account is created), and any changes made to /root and /home/<user> directories in any container are
accessible in all other containers of the user.

Additionally, the user can select one or several container ports to be published on the server. These
ports are mapped to the server ports without changing their numbers. More than one container can use
the same port  or  ports  if  the server has IP aliases:  DCM will  choose an alias where none of the
requested additional ports are currently in use by other containers.

Any other options of the Docker command run that are not available to DCM users by default can
be specifically permitted to individual users by the DCM server administrators. Since many of the
additional  options  create  security  weaknesses,  an  administrator  is  supposed  to  be  careful  when
allowing users to use these options. A user can select one of the permitted options or combinations of
options with preset arguments, but not combine them or change arguments at will.

3.2. Saving changes of containers to new images

Administrators of a DCM server must provide users with at least one image with preconfigured SSH
access.  When creating a container for the first  time, a user can select one of these images. After
making any changes outside of /root and /home/<user> directories (e.g. installing new software), the
user can save these changes to a new image using the commit command.

3.3. Managing containers and images

The following DCM commands to manage containers are available to users: stop – stops a running
container (without removing it), start – starts a stopped container, pause – freezes all processes within
a container, unpause – unfreezes frozen processes within a container, show – shows all containers
belonging to the user and their status, rm – removes a container.

There are also two commands to manage images:
images – shows all images available to the user (this includes basic images provided by the DCM
server administrators and the images created by the user), rmi – removes an image.

3.4. Creating and removing DCM user accounts

Administrators of DCM servers are provided with tools to create new DCM user accounts and remove
them. Creating new user accounts includes setting up their access to DCM interface, creating storage
directories  and  copying  their  public  keys  to  these  directories.  Removing  user  accounts  includes
removing their containers, storage directories, and possibly their images.

4. Security
In the earlier versions of Docker, it was considered possible to break out of a container if users were
allowed to execute arbitrary commands («Containers do not contain», [5]), even more so if they had
root access to the container. Since Docker Engine version 1.10 released in 2016, two key security
features  are  supported:  seccomp  filtering  and  user  namespaces.  These  features  make  Docker
considerably more secure (see [6] for analysis and recommendations).



However,  user  namespaces  is  not  used  by  default,  Docker  has  some  other  potential  security
weaknesses,  and  a  mistake  by  a  DCM  server  administrator  may  introduce  further  weaknesses.
Therefore we recommend to allow only users who can be trusted to make no attempts to break out of
their containers intentionally. The users should also be instructed to give no access to their accounts or
privileged access to their containers to outside parties.

If necessary, DCM can be easily modified to use additional options when creating new containers.
With some modifications it is possible to make containers more secure than Docker default, e.g. by
further restricting root capabilities.

5. Conclusions and further work
We have presented a set of tools that give users indirect access to some of the Docker commands
without full access to the host, allowing them to create Docker containers that can be configured by
the user, save and access the changes made to the containers, and manage the containers. The users are
isolated from each other. The tools can be accessed via a simple command line interface.

The ideas for further development of the toolkit include creating a Web interface and giving users
the option to migrate their images to outside repositories.

Acknowledgements
The authors are grateful to the Russian Foundation for Basic Research (grant No 15-07-09309), with
the financial support of which this work was carried out.

References
[1] Soltesz  S,  Pötzl  H,  Fiuczynski  M  E,  Bavier  A  and  Peterson  L  2007  Proc.  2nd  ACM

SIGOPS/EuroSys European Conf.  on Computer  Systems  2007 Container-based operating
system virtualization: a scalable, high-performance alternative to hypervisors (New York:
ACM New York) 275–87

[2] McFearin L D 2011 Chroot jail Encyclopedia of Cryptography and Security Springer US 206–7
[3] Felter W, Ferreira A, Rajamony R and Rubio J 2015 An updated performance comparison of

virtual  machines  and  linux  containers  Performance  Analysis  of  Systems  and  Software
(ISPASS), 2015 IEEE Int. Symp. On IEEE 171–2

[4] Fábrega  F  J  T,  Javier  F  and  Guttman  J  D  1995  Copy  on  write.  URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.3144&rep=rep1&type=pdf

[5] Walsh  D  2014  Are  Docker  containers  really  secure?  [Electronic  resource].  URL:
https://opensource.com/business/14/7/docker-security-selinux (accessed 10.09.2017)

[6] Grattafiori  A 2016 Understanding  and hardening  Linux containers  NCC Group whitepaper
URL:  https://www.nccgroup.trust/uk/our-research/understanding-and-hardening-linux-
containers/


	3.1. Creating containers
	3.2. Saving changes of containers to new images
	3.3. Managing containers and images
	3.4. Creating and removing DCM user accounts

