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Общие замечания

I Пропускаем вводные обсуждения и предварительную
информацию

I начинаем со стр. 8
I Разд. 2.2. Representation of generic physical constraints
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Representation of generic physical constraints
I In view of the diverse examples physical laws enumerated

above, we write the constraints in a generic form as follows:

H[u] ≤ 0 , (0.1)

I H denotes an algebraic operator, which can involve nonlinearity
and can be obtained from numerical discretization of the
integro-differential operators in the original physics constraints.

I Typically, H is chosen to be a non-negative function such as
norm, so requiring H[u] ≤ 0 would effectively lead to
H[u] = 0.

I As an example, the linear equation Nu = f above can be cast
into an inequality as ‖Nu− f‖2 ≤ 0, where ‖ · ‖ indicates the
Euclidean vector norm.

I кажетcя, что можно использовать и непосредственно
равенство, но см. ниже - “the imprecise constraint”
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Embedding constraints into the generator of GANs

I add a penalty term to the loss function of the generator based
on the generic representation of constraints in the cGAN loss
function:

VC (D,G ) = V (D,G ) + λCphys (0.2)
with Cphys = EZ∼pz (Z) [max (H(G (Z )), 0)] , (0.3)

I λ denotes the penalty coefficient,
I V is the loss function of the baseline GANs to be constrained.
I As the physical constraint term is independent of the

discriminator D, its gradient is non-zero even if the
discriminator D is close to optimum.

I adding physical constraints to the generator loss function
provides an alternative approach for combating the vanishing
gradient problem in the training of GANs.
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Implementation considerations

I The physics-constrained GANs are implemented based on the
open-source software library TensorFlow.

I implementation is built upon the standard, baseline GANs
implementation by Kristiadi et al.
https://github.com/wiseodd/generative-
models/tree/master/GAN.

I The source code for the physics-constrained GANs and the
example cases presented below are publicly available in a
GitHub repository
https://github.com/zengyang7/ConstrainedGANs.git
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Implementation considerations: part of the code

# WGAN

D_loss = tf.reduce_mean(D_real) - tf.reduce_mean(D_fake)

G_loss = -tf.reduce_mean(D_fake)+lam_constraint*tf.reduce_mean(penalty_log)

D_solver = (tf.train.RMSPropOptimizer(learning_rate=1e-4).minimize(-D_loss,
var_list=theta_D))

G_solver = (tf.train.RMSPropOptimizer(learning_rate=1e-4).minimize(G_loss,
var_list=theta_G))

clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in theta_D]
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Geometrical constraint: generating circles. Problem
description

I The training samples are the circles with different radii. The
parametric constrained function of circles is given as{

x = r cos(ψ)
y = r sin(ψ)

(0.4)

I [x (i), y (i)]> denotes the points on the circle in Cartesian
coordinates, where i ∈ {1, 2, ..., 100} is the index of point of a
generated sample.

I The training samples consist of N = 5000 circles whose radius
is drawn from a uniform distribution between 0.4 and 0.8.

I The goal is to first train GANs with the training dataset of
circles and then use the trained GANs to generate samples.

I train standard GANs, standard cGANs, and constrained
cGANs proposed here
I нужно ли cGANs, если constrained
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Representative examples from the training samples

I Each sample consists of 100 points as is evident from the
zoom-in view in the right panel (albeit appearing as solid lines
above due to compact spacing in the left panel).

I These points are evenly distributed along the circumferential
direction of a circle.

I The radius r of each circle is randomly drawn from a uniform
distribution in the range [0.4, 0.8].
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The imprecise constraint
I The imprecise constraint is defined as follow:

C approx = EZ∼pz (Z)

[∑
i

max

((
‖x(i)‖ − ζ

)2
, ε2

)]
, (0.5)

I ‖ · ‖ indicate Euclidean norm, ζ denotes the specified radius,
and ε denotes the tolerance of the specified constraint.

I The imprecise constraint is schematically illustrated:
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The metrics

I three metrics are used to evaluate the generated samples
I 1st: the magnitude of the original loss function
I 2d: the deviation of generated samples from the circle with an

optimal radius r̄ obtained from least-square fitting:

Edev =
1

n

n∑
i=1

∣∣(x2i + y2
i )− r̄2

∣∣ (0.6)

I 3d: the deviation from the specified radius:

Ebias = |r̄ − ζ| , (0.7)

I 〈·〉 below indicates ensemble averaging
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Results for ε = 0 (1)

Standard GANs
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Results for ε = 0 (2)

Standard cGANs
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Results for ε = 0 (3)

Constrained cGANs
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Results for ε = 0 (4): loss function

The generator (left) and the discriminator (right)

Epoch Epoch
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Results for ε = 0 (5)

Deviations 〈Edev〉 (left) and Bias 〈Ebias〉 (right)

Epoch Epoch
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Results for ε 6= 0 (1)

Constrained cGANs, ε = 0.1 (left) and ε = 0.2 (right)
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Results for ε 6= 0 (2)

The generated data at different epochs (1, 21, 41, and 61), ε = 0.4
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Instead of a conclusion

I More complex example:generate velocity fields of turbulent
flows with zero divergence ≡ constraint

I a general approach is proposed of embedding constraints in
GANs for emulating physical systems.

I The physical constraints are embedded to the loss function of
the generator to help the weaker party in the two-player game,
which help the training to achieve equilibrium faster.

I This is motivated by the observation that the constraints
reduce the effective dimension of the search space for the
weight optimization and thus accelerate the training
convergence.

I Moreover, there is the extension of the proposed framework of
constrained GANs to incorporate imprecise constraints. This is
motivated by the fact that many physical constraints are not
known exactly in practical applications.
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