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Simplified IACT operation scheme
IACT = Imaging Atmospheric Cherenkov Telescope 
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Some gamma-ray observatories with IACTs
● VERITAS (Very Energetic Radiation 

Imaging Telescope Array System), 
Arizona, US  

● MAGIC Florian Goebel Telescopes, La 
Palma,  Canary Islands

● H.E.S.S. (High Energy Stereoscopic 
System), Khomas highlands, Namibia

● CTA (Cherenkov Telescope Array), 
Paranal, Chile +  La Palma, Spain

● TAIGA-IACT (Tunka Advanced Instrument 
for cosmic ray physics and Gamma 
Astronomy), Tunka valley, Russia 
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Examples of EAS images in an IACT camera

On the left: EAS initiated by gamma.     On the right: EAS from proton.
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IACT data processing
● Several stages, including:

● calibration of individual photomultipliers in the IACT 
camera

● image cleaning
● aggregating information from individual detectors 

(pixels)  
– on its basis the main parameters of an individual 

event are determined  ⇦ scope of this report
● event type (gamma/cosmic rays), its energy, and direction of arrival

● obtaining of high-level information about the source 
– energy spectrum, structure of the radiation, temporal variability
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IACT data processing: non-DL methods
● Simulation of EAS using Monte Carlo 

methods (CORSICA)
● Hillas parameter technique

● mainly by the cuts method
● it is possible to reconstruct the 

properties of the primary particle: 
– determine its type
– other characteristics, in particular, its 

energy E, the impact distance R
● reduces the information to the small set of parameters 

● a lot of information is discarded, which can potentially 
be important for the reconstruction and classification of 
events.



DLCP2023, June 21-23, 2023 A.Demichev & A.Kryukov 7

DL for particle type classification 
(background rejection): highly incomplete list

● Nieto Castaño D., et al., 2017. PoS ICRC2017, 809.
● Shilon I., et al., 2019.  Astropart. Phys. 105, 44–53.
● Parsons R. & Ohm S., 2020. Eur.Phys.J. C80, 1–11.
● Spencer S., et al., 2021. Astropar.Phys. 129, 102579.
● Riquelme, D., et al., 2023. ICPRAM 2023, 725–732.
● De, S., et al. 2022.  arXiv:2206.05296.
● Parsons, R., et al. 2022. arXiv:2203.05315.
● Nieto, D., et al., 2019. arXiv:1912.09898.
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Technicality: hexagonal ⇔ square grids
● pixels of most IACTs are arranged in a hexagonal 

array, while usual NN inputs assume a square grid
● Nieto et al., 2019 considered different image 

transformations

● the main conclusion: accuracy and ROC/AUC, 
coincide within errors for all the methods studied

● general reason: CNNs percept only topological 
(neighborhood), not metrical pixel interrelations  
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Technicality: hexagonal ⇔ square grids (2)
● One more method is based on 

approximation of the regular 
square grid by using oblique 
coordinates with angle 60◦ 

● changing number of neighbors
● not compared with other methods

● Another approach: special 
convolution operations taking into 
account only neighborhood

● implementation: IndexedConv 
package (Jacquemont et al., 2019) 
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1. Convolutional neural network
● Nieto Castaño et al., 2017: using ResNet50 &  Inception 

V3 (a bit better performance for this task)
● DL methods can be used to classify IACT images 

(gamma/proton)
● without any prior parameterization or any assumptions 

about the nature of the images themselves 
● accuracy of Inception V3 is dependent on the primary particle 

energy  from 81.4% for the low energy; 91.6% for high energy

Inception V3
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2. Recurrent neural network
● An interesting feature of the work by Shilon et al. 

(2019) is the first attempt to use RNN in combination 
with CNN to analyze image sequences time-ordered 
by triggers of each of the four H.E.S.S. IACTs

● did not find sufficiently convincing arguments for its full-
fledged application

● However, later this approach was improved 
(CRNN=CNN+RNN+LSTM) in a number of works  & 
successfully applied both to background rejection 
(classification) and parameter reconstruction

● E.g., Parsons and Ohm, 2020:  CRNNs open the 
possibility of improving the hadronic background rejection 
of about 20–25% compared to using the Hillas parameters
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3. A combination of convolutional neural 
networks with a recurrent neural network

● Brill et al., 2019:
● dependence of the CRNN 

performance on the method of 
ordering images

● identification number (arbitrary 
but rigid order) vs. Size 
parameter (total image intensity 
~ proximity to the shower 
center)

● performance - about the same
● no clear confirmation that 

sorting by the Size improves
number of training steps
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4a. Anomaly detection
● A distinctive feature of (De et al., 2022) is that it not 

only poses the problem of classifying already known 
primary particles (Standard Model; SM), but also the 
search for particles Beyond SM (BSM).  Suggestion: 

● CNNs + autoencoders (AE) 
● AE is trained on events (MC-simulated) initiated by SM 

particles. 
● Then AE restores well IACT images for SM primary 

particle and distorts it in the case of a BSM particle. 
● This may be a signal that there are particles in the 

cosmic ray flux that are described outside the 
framework of the Standard Model.
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4b. Anomaly detection
De et al., 2022:

● The standard SM induced showers are taken as the training set, and the autoencoder learns relevant 
features of these images.

● If the resulting image resembles the original input within some tolerance, the image is clas-
● sified as “normal”, otherwise the image is classified as “anomalous”.

The schematic diagram of the implemented autoencoder architecture.
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DL for reconstruction of EAS/primary particle 
parameters: highly incomplete list

● Mangano et al. 2018. IAPR Workshop, pp. 243–254.
● Postnikov et al., 2019. Journ.Phys. p. 012048.
● Polyakov et al. 2021. PoS 395, p.753.
● Gres & Kryukov, 2022. PoS DLCP2022, p.002.
● Jacquemont et al. 2020. ADASS XXX, pp. 1–5.
● Jacquemont et al, 2021.VISAPP 2021, pp. 1–12.
● Abe et al. 2021. PoS ICRC2021, 703.
● Bylund et al. 2021. PoS ICRC2021, 758.
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Reconstruction: examples of studies

● Mangano et al., 2018,
● Postnikov et al., 2019,
● Polyakov et al., 2021:

● rated the results of using 
CNNs  as very promising,

●  although they were still not 
as good as those of existing 
algorithms based on Hillas 
parameters.

● requires further 
improvements

Regression = reconstraction of 
energy and angle of arrival

Mangano et al., 2018:
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Reconstruction: examples of studies (2)

● Polyakov et al., 2021; 
Gres and Kryukov, 2022

● more complex NN
● + joint processing of images 

from multiple telescopes
● even more promising 

results, in particular: 
● reconstructed energy 

spectrum is in good 
agreement with that of the 
traditional method and 
model spectrum.

Gres and Kryukov, 2022:

ResNet GoogLeNet
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Deep multi-task learning architecture
● Jacquemont et al., 2020, 

2021a: γ-PhysNet
● multitasking DL 

architecture that performs 
full event reconstruction 
with a single NN using 
parameter 
interdependence

● two parts: 
● (ResNet 56 with 

attention)=encoder
● multi-task block 
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Deep multi-task learning architecture (2)
● LST1 telescope, CTA
● The angular and energy 

resolution curves, as well 
as the sensitivity curve, 
show that γ-PhysNet 
outperforms the classical 
method Hillas + RF 

● in particular on
● gamma/proton classification;
● energy and direction 

reconstruction;
● resulting sensitivity   
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Deep multi-task learning architecture (3)
● Jacquemont et al., 2021b; Abe et al., 2021 =  continuation 

and development of the previous work:
● simulated data ⇒ real experimental data.
● the systematic learning error due to the difference between 

them is discussed 
– of particular importance: difference due to night sky background 

(NSB)
– solved by adding noise to the simulated data used to train the model 

● thanks to the (DMTL+Attention) architecture of the γ-PhysNet 
– it was possible to achieve a clear detection of the Crab Nebula with a 

statistical significance of 14.3 σ, 
– outperforming the (Hillas+Random Forest) standard approach 
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Fast simulation of EAS images in IACTs
● images of events in IACTs are simulated using the 

MC-package CORSIKA + specific soft tracing of 
Cherenkov photons through the IACT optics

● very resource intensive and require a lot of 
computational time

● for some analysis purposes the complete model 
information is redundant

● In Dubenskaya et al., 2021: 
● it was proposed to use generative adversarial networks 

(GAN) for fast imaging of gamma events in IACT
● although the training can take a long time, the generation 

is very fast
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Fast simulation of EAS images in IACTs (2)
● of particular interest are conditional generative 

adversarial networks (cGANs)
● produce images with a predetermined spectrum in 

terms of, e.g., Size

Architecture of the discriminator Architecture of the generator



DLCP2023, June 21-23, 2023 A.Demichev & A.Kryukov 23

Fast simulation of EAS images in IACTs (3)
● in (Polyakov et al., 2022), for the same purpose of 

generating images in an IACT camera with a given 
spectrum, a conditional variational autoencoder 
(cVAE) was used.

● thus, in these works, it was shown that GAN, cGAN 
and cVAE simulate proton and gamma events for the 
TAIGA-IACT experiment with a high degree of 
accuracy and reliability.

● see the reports at this conference
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Dedicated software for analyzing IACT data 
using DL methods: CTLearn package

● CTLearn (Nieto Castaño et al., 2019):
● provides a backend for training neural networks for 

reconstructing IACT events using TensorFlow
● allows the user to focus on developing and applying new 

models using functionality specifically designed for IACT 
event reconstruction 

● uses YAML configuration files to provide reproducible 
training and prediction.

● also includes a number of helper scripts that provide 
a convenient way to summarize results and plot 
relevant graphs
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Dedicated software for analyzing IACT data 
using DL methods: CTLearn package (2)

● Data can be downloaded in three modes: 
● mono (single images from a telescope of a particular type 

are downloaded); 
● stereo (events recorded by a number of telescopes of the 

same type are loaded); 
● multi-stereo (events involving several types of telescopes 

are loaded)
● has three pre-installed models for classifying gamma 

rays and cosmic rays
● freely available on GitHub: https://github.com/ctlearn-

project/ctlearn (license: BSD-3)
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Dedicated software for analyzing IACT data 
using DL methods: GammaLearn platform

● GammaLearn (Jacquemont et al.,2019; Vuillaume et al., 2019)
● modular software written in Python & is based on the 

PyTorch framework
● has an advanced set of tools that provide all the 

functions for: 
– loading datasets; 
– data pre-processing (filtering, augmentation, 

transformation); 
– network training, validation and testing; 
– tracking the learning process & visualizing it
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Dedicated software for analyzing IACT data 
using DL methods:GammaLearn platform (2)
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Dedicated software for analyzing IACT data 
using DL methods:GammaLearn platform (3)
● IndexedConv package provides convolution and 

pooling operations for input data (images) on any grid
● The GammaBoard package provides a dashboard 

that displays metrics for evaluating the performance 
of IACT event reconstruction

● convenient to use the Tensorboard set of web 
applications that come with TensorFlow

● freely available on 
https://gitlab.in2p3.fr/gammalearn/gammalearn 
(MIT License)
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Conclusion (1/2)
● DL  methods: achieve an optimal balance between 

the time/resource intensity of calculations and the 
requirement to save the maximum possible amount of 
input experimental information

● very promising for both existing installations and 
future generation telescopes

● CNNs are the backbone of almost all DL methods
● even by themselves demonstrate the high quality of IACT 

data processing
●
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Conclusion (2/2)
● considering that future generation installations will consist 

of several or even many coordinated IACTs (⇒ image 
sequences), CNNs +RNN+ LSTMs, seems to be very 
promising

● given that the EAS image usually occupy a relatively small 
part of the entire camera area, the use of NN with the 
attention mechanism can be very fruitful

● the emergence of specialized computer platforms also 
contributes to the widespread use of deep learning 
methods for analyzing IACT data.
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