

7th International Conference on Deep Learning in Computational Physics (DLCP-2023) June 22, 2023

Decomposition of Spectral Contour into Gaussian Bands using Improved Modification of Gender Genetic Algorithms

G.A. Kupriyanov, I.V. Isaev, <u>S.A. Dolenko</u> Laboratory of Adaptive Methods of Data Analysis D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University

Genetic Algorithms (GA)

- An effective class of optimization algorithms based on ideas of evolution in nature
- A number (population) of candidate solutions (individuals) are considered simultaneously
- The quality of a solution is estimated by its fitness function
- Two basic principles applied are selection and inheritance
- Selection of the fittest provides survival of better individuals
- Inheritance brings information contained in selected individuals to next generations

Genetic Operators

Algorithm of computation

The main aspects of an implementation of GA are:

- Type of coding of information in an individual
- The method of selection
- The crossover operator providing inheritance and exchange of information between parents
- The mutation operator providing search of new areas

Selection

1. <u>Roulette Wheel</u> Population (Set of individuals) Random selection of 1 ind. Individual

Crossover

One-point crossover

Mutation

Conventional GA and Gender GA (GGA)

- In conventional GA, all individuals are equal in respect to genetic operators
- In nature, higher mammals use sexual selection
- The Qfemale gender is responsible for preserving useful features found by the evolution
- The *S* male gender is responsible for variability.
 Among *S* males, geniuses and freaks are more common than among *Q* females
- In this study, we divide the population in what we call GGA into *d* males and *Q* females half by half
- The mutation rate for *d* males is several fold higher

GA and GGA operators

Operators	GA	GGA
Selection	Roulette Wheel	∂male - Roulette Wheel ♀female - Roulette Wheel
One-bit mutation	Uniform distribution	∂male - Uniform distribution, higher rate ♀female - Uniform distribution, lower rate

Modifications of GGA

Operators	GGA-1	GGA-2	GGA-3
Selection: AMale	Roulette Wheel	Tournament	Tournament
Selection: Pemale	Roulette	Roulette	Roulette
	Wheel	Wheel	Wheel
Mutation: (7) Male	Linear	Uniform	Linear
	distribution	distribution	distribution
Mutation: Pemale	Linear	Uniform	Linear
	distribution	distribution	distribution

Testing on 2D Model Functions: Func Types

Testing on 2D Model Functions: Parameters

- Stopping criterion: less than 10⁻⁶ increase in fitness function maximum in the population during last 20 generations
- 100 independent runs
- Continuous chromosomes with binary encoding
- Roulette wheel selection method
- Single-point crossover operator
- Single-bit mutation operator
- Fixed population size in all generations
- Equal number of *Amales* and *females* in each generation

Testing on 2D Model Functions: Parameters

Parameters	GA	GGA
Dimension of chromosomes, bits		25
Individuals in the population		100
Share of elite individuals		6%
Probability of mutation		5% - ∂males
		0.1% - \bigcirc females

Testing on Model Functions: Results

Testing on Ackley Model Function: Results

Decomposition of Spectral Contour

- Raman valence band of liquid water
- Decomposition of spectral contour into Gaussian shapes
- This is an incorrect inverse problem solved with various error values for various numbers of Gaussians
- 3 parameters per Gaussian; multiple fitness minima

Decomposition at Various Temperatures

Conclusion

- Gender modification of GA is more efficient than conventional GA for complex multi-extremum problems
- It prevents premature degradation of the population and stop of the evolution, providing better solution
- Our new modifications of selection and mutation provide improvement of GGA performance for complex problems
- The algorithm has been tested on several model problems and on one real-world problem.

Further tests on a wider variety of problems are needed

Other differences between genders may be introduced

Thank you for your attention!

