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In gamma astronomy, the analysis of extensive area shower (EAS) images
recorded by imaging atmospheric Cherenkov telescopes (IACTs) can be
Improved and for some methods requires synthetic images with known
parameters of the primary particles. Typically the synthetic images are
constructed using Monte Carlo simulation of the events.

We are developing methods for using conditional variational autoencoders
(CVAES) to generate synthetic IACT images corresponding to both gamma
and hadron events. To be useful, the resulting images need to reproduce
both the explicitly specified conditional parameters and the general
distributions of some characteristics of the images.



Autoencoders

Autoencoders are artificial neural networks that learn efficient encodings of
the input data. An autoencoder consists of an encoder that maps the input
Into a low-dimensional vector called latent vector or code, and a decoder
that attempts to reconstruct the input from the code. Trained autoencoders
learn to ignore insignificant data and are useful in e.g. image denoising or
data compression.
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Variational autoencoders

Variational autoencoder is a
probabilistic generative model. It is
similar to autoencoders, consisting
of an encoder and a decoder.
However, in a variational
autoencoder the encoder maps the
Input into a distribution in latent
variable space, and the decoder
reconstructs some image from a
vector sampled from this
distribution.
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Conditional variational autoencoders

In addition to the latent variables learned by the variational autoencoder,
some parameters of the input data can be specified explicitly during training.
These parameters are passed both to the encoder and the decoder and can
be continuous as well as discrete (e.g. the energy and the type of a primary
particle, respectively). When the trained CVAE Is used to generate images,
the desired values of the parameters can be specified. However, unlike
constrained variational autoencoders, CVAEs only use these parameters as
additional data rather than restrict the resulting images to have the specified

values of the parameters.



Input data

The CVAEs were trained on a
subset of 39443 gamma images
and 28439 proton images
simulated by Monte Carlo
software for an IACT of the
TAIGA experiment. The energy
of the gamma quanta was 1.5—
60 TeV, and the energy of the
protons was 2-100 TeV.

The TAIGA IACT located in Tunka valley, Russia



The CVAE architecture
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| oss functions

The CVAESs use a two-component loss function: the first component, called
Image loss, corresponds to the differences between the input image and the
Image generated by the decoder. We primarily used mean squared error
(MSE) as the image loss. The second component of the loss function, called
Kullback-Leibler loss (KL), restricts the shape of the latent distributions

produced by the encoder. By varying the relative weights of the components
we can get different results.
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Image size

CVAE-generated images tend to have lower size than the value of the
conditional parameter used to generate them.

For gamma images, the CVAE trained with MSE loss generates images with
the average relative size shift —0.035 and the average relative size error
0.044, the CVAE trained with MSE+20KL loss generates images with the
average relative size shift —-0.021 and the average relative size error 0.046.

For proton images, the CVAE trained with MSE loss generates images with
the average relative size shift —0.09 and the average relative size error
0.105, the CVAE trained with MSE+5KL loss generates images with the
average relative size shift —0.081 and the average relative size error 0.104.
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relative size shift
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Gamma score

A classifier neural network was trained on the same set of images as the
variational autoencoders.

The classifier gives the CVAE-generated gamma images the average
gamma score 0.99863 for the CVAE with MSE loss and 0.99704 for the
CVAE with MSE+20KL loss, respectively.

For the CVAE-generated proton images the average gamma score is
0.03032 for the MSE autoencoder and 0.02485 for the MSE+5KL
autoencoder, respectively.

For comparison, Monte Carlo-simulated gamma events not used in the
training set of the classifier get the average gamma score 0.99227; Monte
Carlo-simulated proton events get the average gamma score 0.02612.
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Hillas parameters

IACT images are often analyzed using Hillas parameters.

We use them to analyze distributions of CVAE-generated images.
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Conclusion

We trained conditional variational autoencoders (CVAES) using Monte Carlo-
simulated images of gamma and proton events.

The images generated by the CVAEs are similar enough to the Monte Carlo
Images: their gamma score by a classifier neural network is higher than that
of Monte Carlo-simulated images for gamma events, and is close to the
score of Monte Carlo-simulated images for proton events. The generated
Images on average have somewhat lower size than the requested values,
with the average relative size error less then 5% for gamma events and less
than 11% for proton events.

For most Hillas parameters, the distributions of CVAE-generated images fail
to reproduce the distributions of the Monte-Carlo events, but they are
broadly similar.
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