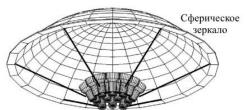
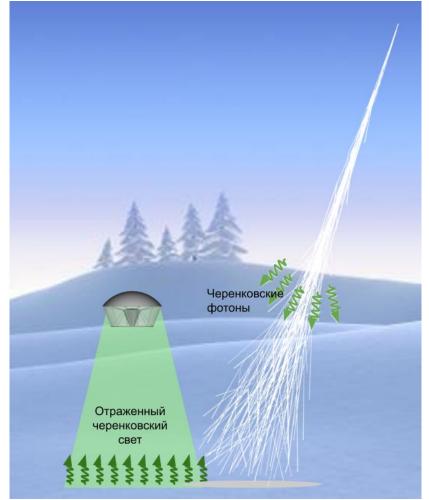
Применение свёрточных нейронных сетей для выделения событий ШАЛ в эксперименте СФЕРА-3

Энтина Е.Л., Подгрудков Д.А., Азра К.Ж., Бонвеч Е.А., Галкин В.И., Зива М.Д., Иванов В.А. Колодкин Т.А., Овчаренко Н.О., Роганова Т.М., Черкесова О.В., Чернов Д.В.

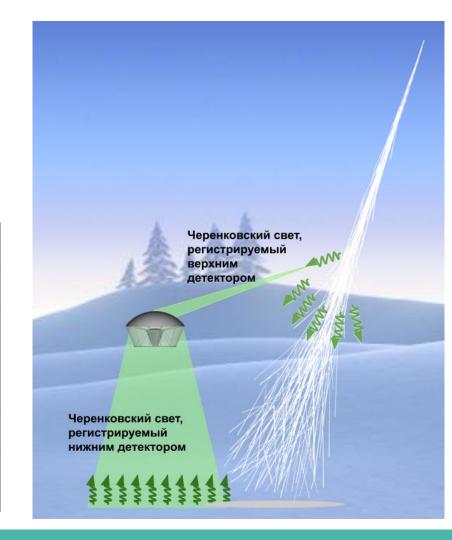

Серия экспериментов СФЕРА


Серия телескопов СФЕРА реализует методику регистрации отраженного от снежной поверхности излучения Вавилова-Черенкова от ШАЛ.

- 1. большая площадь регистрации ЧС ШАЛ одной установкой.
- 2. для зарегистрированных событий есть измерения из приосевой области ливня.
- 3. использование высоты подъема телескопа для смены "разрешения" исследования.

СФЕРА-1 (1997-2000)

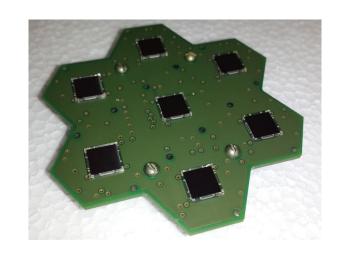
СФЕРА-2 (2008-2013)



СФЕРА-3

Продолжением серии телескопов СФЕРА является проектируемый телескоп СФЕРА-3 с большим диаметром зеркала. Возможный носитель: БПЛА.

	СФЕРА-2	СФЕРА-3
Диапазон энергий	10-500 ПэВ	1-1000 ПэВ
Возможность одновременной регистрации прямого и отраженного ЧС	×	Y
Число пикселей	109	>2000
Светочувствительные элементы	ФЭУ	SiPM

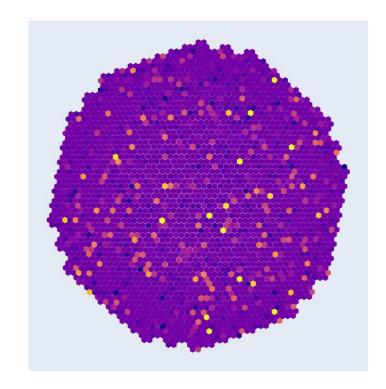


Триггерный алгоритм СФЕРА-2

Телескоп СФЕРА-2 работал с локальным топологическим триггером. После активации пикселя по порогу алгоритм находил смежные активированные пиксели: 3 и более считалось срабатыванием триггера. Пороги выставлялись адаптивно в начале работы триггерной платы. Адаптивный порог позволял не зависеть от уровня освещенности.

Такая модель триггера обеспечивала полное отсечение шума за время полёта, но устанавливала высокие пороги активации пикселей: слабые события не регистрировались.

SiPM, в отличие от ФЭУ, обладают меньшими размерами, легче и работают при меньшем напряжении. Но у SiPM есть особенность - большая вероятность кратных срабатываний: продуцирование нескольких фотоэлектронов в ответ на 1 фотон. Частота ложных срабатываний триггера, в зависимости от выставленных порогов, достигает 10⁵ шт/мин.


Триггерный алгоритм СФЕРА-3

Для телескопа СФЕРА-3 предлагается использовать 2-х ступенчатую схема срабатывания триггерного механизма:

- 1. Работает механизм поиска активации соседних пикселей, при срабатывании начинается запись фиксированного числа бин времени.
- 2. над записанными сигналами запускается вторая ступень триггера, подтверждающая наличие события.

Вторая ступень триггера призвана снизить частоту ложных срабатываний триггера до величины 1 шт/мин.

Применение свёрточных нейросетей в задаче обусловлено стремлением выделять более сложные визуальные паттерны, менее чувствительные к флуктуациям естественного фона.

Подготовка данных

Разработка триггерного механизма телескопа СФЕРА-3 опирается на использование синтетических данных. Для учета эффектов, влияющих на финальное распределение фотонов на разных стадиях, моделирование проводилось в несколько этапов:

- моделирование ЧС ШАЛ и оптического фона;
- учёт прохождения отраженных фотонов через атмосферу;
- учёт прохождения фотонов через оптическую схему телескопа;
- учёт отклика электроники;

Для моделирования событий ШАЛ были задействованы мощности Суперкомпьютера Ломоносов-2 в рамках проекта 6788 «Разработка автоматизированного метода оптимизации модели телескопа СФЕРА».

Генерация событий

учёт атмосферы

оптическая схема

отклик электроники

Подготовка данных

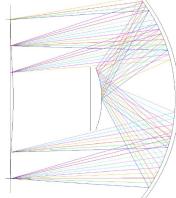
- моделирование событий ШАЛ и оптического фона:
 смоделировано 100 событий ШАЛ с параметрами:
 - о модель взаимодействия QGSJETII-04,
 - о модель атмосферы №1
 - о первичная частица: Fe,
 - ∘ энергия 10 ПэВ,
 - о зенитный угол 15°, азимутальный угол [0,360°]. Для каждого события дополнительно разыграно 100 случайных вариаций координат оси ливня относительно оси детектора. Т. о., полное число уникальных данных 10 000 событий.

CORSIKA 7.5600

- Посчитана амплитуда оптического фона: 0.013 ф/нс в пикселе.
- учёт прохождения отраженных фотонов через атмосферу: геометрическое преобразование проекции на входное окно детектора.

Генерация событий

учёт атмосферы


оптическая схема

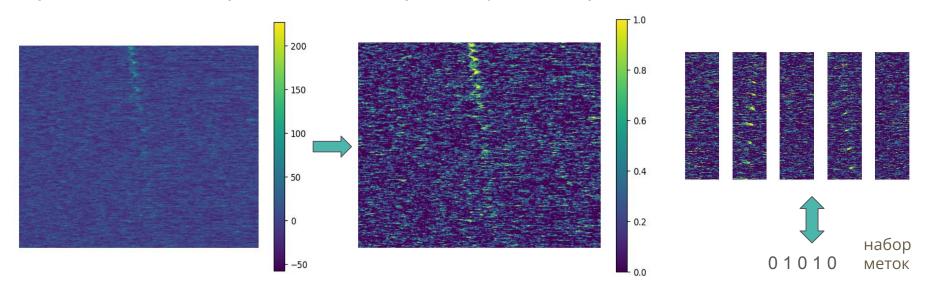
отклик электроники

Подготовка данных

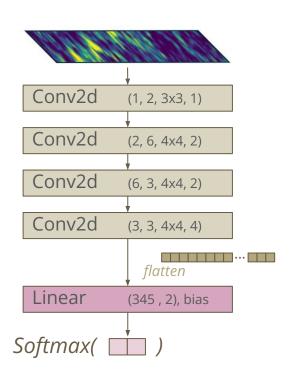
- учет прохождения фотонов через оптическую схему телескопа
 - о радиус кривизны зеркала: 1654 мм
 - о радиус мозаики: 340 мм
 - о радиус кривизны мозаики: 868 мм
 - о радиус диафрагмы: 850 мм
 - о площадь входного окна: 2,27 м²
 - кривизна линзы светосборника: 17 мм
- учёт отклика электроники
 - импульсная характеристика
 SiPM + усилитель
 - ∘ Напряжение на SiPM: 29.6 V
 - ∘ Температура: -15.0 °C
 - о Ширина распределения коэффициента усиления: 0.82
 - Амплитуда фоновых фотонов: 0.013 ф/нс

Генерация событий

учёт атмосферы

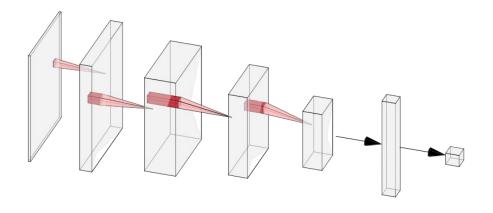

оптическая схема

отклик электроники


Нормализация данных и формирование датасета

В качестве исходных данных используем временную развёртку событий, трактуя время как вторую пространственную координату. Это позволяет применять 2d сверточные слои.

Для каждой временной развёртки выделяем случайный участок 50 бин времени только с шумовым сигналом, и участок, соответствующий пришедшему событию ШАЛ.



Архитектура NN и параметры обучения

Решаем задачу бинарной классификации.

- нелинейные функции: *ReLU*
- функция потерь: *CrossEntropy*
- оптимизация алгоритмом *Adam*

Результаты

Для СФЕРЫ/2 энергетический порог был эквивалентен 20-25 ПэВ для высоты 1000 м.

Для желаемой частоты ложно положительных срабатываний 1 шт/мин, соответствующий энергетический порог СФЕРЫ-3 (в случае прямой имплементации триггера СФЕРЫ-2) составит 9-12 ПэВ.

Применение дополнительной фильтрации нейронными сетями (0.1% шума, распознанного как событие) позволит снизить частоту ложноположительных срабатываний пороги до 10² шт/мин ценой 3% событий.

Точность классификации

		распознаны как	
		событие	шум
на самом деле	событие	99.3%	0.7%
	шум	1,0%	99,0%

После установки границы разделения классов

		распознаны как	
		событие	шум
на самом деле	событие	97.2%	2.8%
	шум	0,1%	99,9%

Дальнейшее снижение частоты срабатывания триггерной системы возможно за счет увеличения порога активации пикселя, тогда ожидаемый порог энергий составит 4-6 ПэВ.

Заключение

Представлены результаты применения свёрточных нейронных сетей в задаче классификации изображений для выделения событий ШАЛ в эксперименте СФЕРА-3.

Дальнейшее исследование будет сфокусировано на:

- способах сжатия нейронной сетей с учетом необходимости имплементации на предполагаемые вычислители;
- триггерного механизма для совместной регистрации событий двумя детекторами.

Работа поддержана грантом РНФ 23-72-00006

«Разработка автоматизированного метода оптимизации модели телескопа для исследования первичных космических лучей в диапазоне $10^{15} - 10^{18}$ эВ по отраженному от снега и прямому черенковскому свету широких атмосферных ливней»