

The 8th International Conference on Deep Learning in Computational Physics, June 19-21, 2024

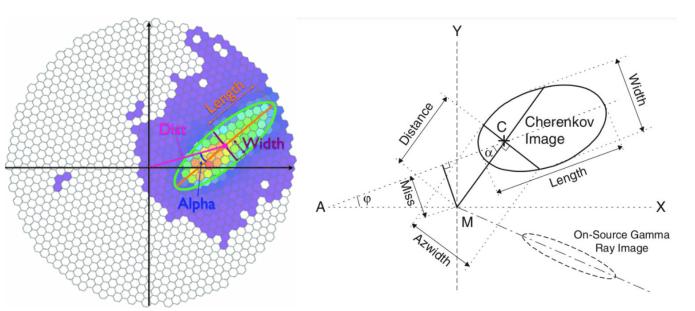
GAMMA/HADRON SEPARATION IN THE TAIGA EXPERIMENT WITH NEURAL NETWORK METHODS

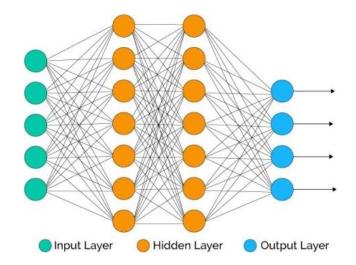
<u>Elizaveta Gres¹</u>, A. Kryukov², P. Volchugov², A. Demichev², D. Zhurov¹, Ju. Dubenskaya², S. Polyakov², S. Polyakov², A. Vlaskina²

1 - Applied Physics Institute of Irkutsk State University, Irkutsk;

2 - Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow.

TAIGA AND TAIGA-IACT


- Imaging Air Cherenkov Telescopes (IACT) are located in Tunka Valley (50 km from Lake Baikal), Republic of Buryatia, at the astrophysical gamma observatory TAIGA of the API ISU.
- They are telescopes-reflectors with a 4-meter segmented spherical mirror. In its focus there is a camera, representing as matrix of ~600 PMTs.
- IACTs detect Cherenkov light from Extensive Air Showers (EASs), originating from the interaction of cosmic or gamma radiation with the atmosphere.
- This type of detectors helps to select gammaray events from the hadron background based on obtained EAS images.


51° 48' 35" N 103° 04' 02" E 675 m a.s.l.

IACT DATA PROCESSING

- I. Hillas Parameter cuts Standard image processing method
 - Calculation of image first, second momentums named Size, Width, Length, etc.;
 - Search dependences and optimal criteria in these parameters to distinguish gamma-events from hadron background;
 - Application those cuts and estimation of the signal from gamma-source.

- II. CNN image classification machine learning method
 - Creation of MC training and validation set according to experimental data;
 - Set the neural network model CNN;
 - Image modifications for CNN;
 - Assessment of neural network in the classification problem;
 - Application CNN and estimation of the signal from gammasource.

PROBLEM AND AIM OF THE RESEARCH

- TAIGA-IACT detect gamma EAS in TeV energy range the ratio of gamma to hadron fluxes is 1:10⁴. Hillas
 Parameter cuts are not allow the researchers to separate gamma-events from hadron events completely.
- In the standard method, cuts are not unified: there could be different combinations of Hillas Parameters cuts in the task of IACT events classification.

• Standard method is the only method of analysis of TAIGA-IACT experimental data now.

- **The aim of the research**: development of neural network methods for processing and analyzing data from the Cherenkov telescopes TAIGA.
- Tasks:
 - To collect required MC data, train and validate the training of the neural network model.
 - To find the solution for neural network method for high class imbalance for TAIGA-IACT data analysis.
 - To test CNN method in the case of Crab Nebula observation;
 - To compare obtained results with standard method, based on Hillas parameters cuts.

CNN ARCHITECTURE

- Number of weights: 7 millions
- Loss function: binary crossentropy.
- **Training**: 50 400 MC gamma events & 52 400 thousands experimental hadrons
 - Generated by CORSIKA and with TAIGA detector modeling software.
 - Energy range: I-200 TeV
 - Zenith angle: 30-40°
 - Validation: 16900 gammas & 17300 experimental hadrons

	Images 41×41							
	Conv 3x3, 96 f.							
	Conv 3x3, 96 f.							
	MaxPool 2x2, s=2							
	Conv 4x4, 128 f.							
	Conv 4x4, 128 f.							
	MaxPool 2x2, s=2							
	Conv 4x4, 196 f.							
	Conv 4x4, 196 f.							
	MaxPool 2x2, s=2							
	Conv 5x5, 384 f.							
	Conv 5x5, 384 f.							
MaxPool 2x2, s=2								
512 neurons								
	256 n.							
	128 n.							
	1 n.							

Gamma score

IMAGE PREPROCESSING

• I. Image cleaning;

Wobble

offset

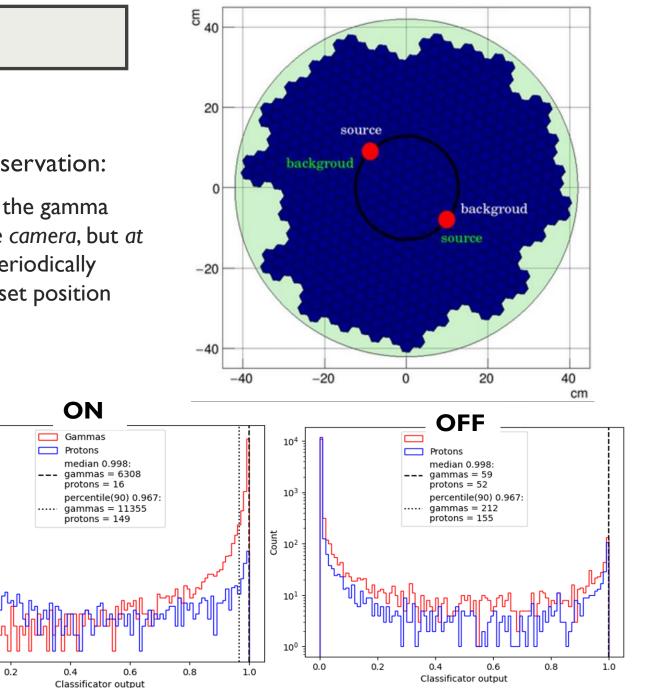
Extended camera

Original camera

Gamma EAS

- II. Image modification for Wobble mode of observation:
 - Wobble mode IACT operating mode, in which the gamma radiation source is located *not in the center of the camera*, but *at a fixed distance from it.* In this mode the source periodically shifts from its position to another (opposite) offset position

104


10³

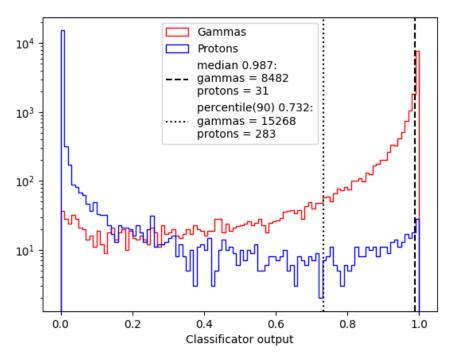
10²

10¹

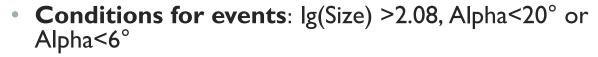
10⁰

0.0

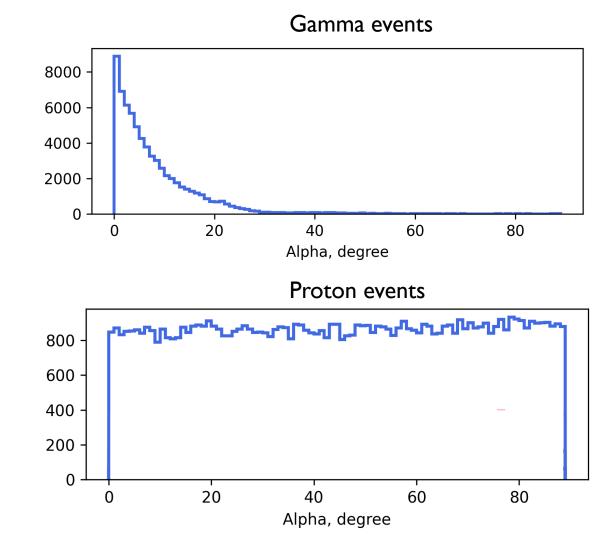
IMAGE PREPROCESSING


- III. Train set expansion by 60° rotation (not applied in validation and test).
- IV. Transformation to a square image with the axial method;
- **V.** Logarithmic amplitude normalization:

CNN TRAINING AND VALIDATION

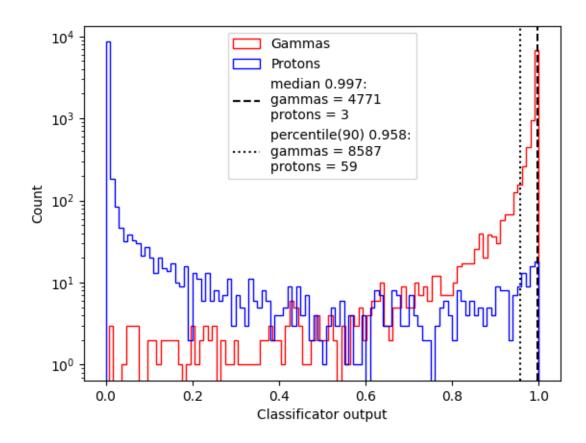

- Training:
 - Gamma: 50.4 thousands. * 6 rotations
 - Hadrons: 52.4 thousands. * 6 rotations.

- Validation:
 - Gamma: 16.9 thousands
 - Hadrons: 17.3 thousands



• Thus, the background suppression at the 50% gamma loss threshold is **no more than 1/1000.**

CNN TRAINING AND VALIDATION



- We are not interested in images severely distorted by cleaning;
- Remains:
 - Alpha<20°: gamma ~90%, hadrons ~20%
 - Alpha<6°: gamma ~50%, hadrons >10%
- Significantly reduces the number of events and speeds up data processing;
- Let CNN to consider the specific point on the camera more closely.
- Hence, training with Alpha<20° and Ig(Size) >2.08:
 - MC гамма: 38400 (I-200 TeV, 30-40° zenith)
 - Hadrons: 40000

CNN TRAINING AND VALIDATION

Validation: 9500 MC gamma и 9600 hadron events

At class threshold 0.9965:

- 4771 gamma events
- 3 hadrons

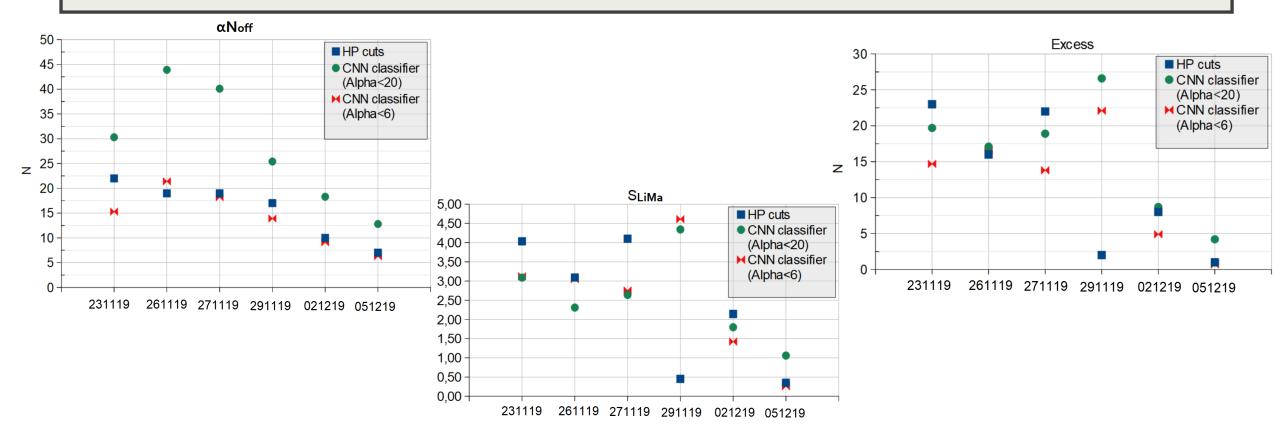
«Gamma-hadron» ratio is more 1/100, leading the general background suppression from 1/2000 to 1/10000

SEPARATION OF THE GAMMA SIGNAL FROM THE CRAB NEBULA AND COMPARISON WITH STANDARD METHODS

 After estimation of background suppression, 6 dates of Crab Nebula were selected in November of 2019-2020 observation season and analyzed using Hillas Parameters (HP) cuts applied in the TAIGA collaboration and CNN classifier.

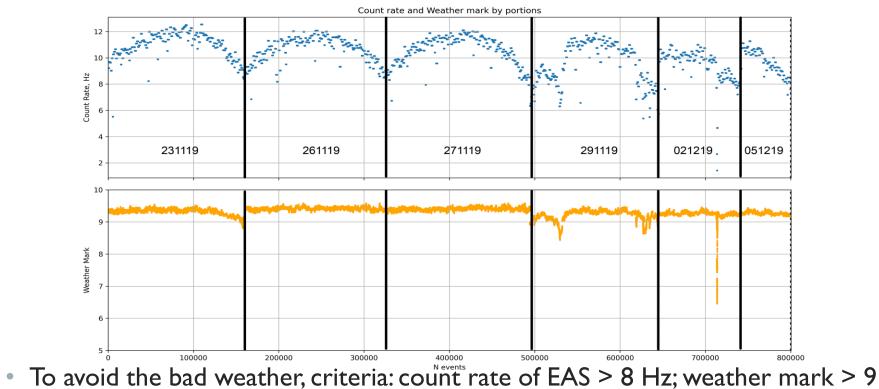
• HP cuts:

Size > 120 phe; 0.36° < Dist < 1.44°; 0.024° < Width < $0.068^{\circ} \cdot lg(Size) - 0.047^{\circ};$ Lendth > $0.145^{\circ} \cdot lg(Size); \Theta^2 < 0.05^{\circ}$


• Significance
$$S_{LiMa}$$
 (α – time ratio of ON- and OFF-observations):

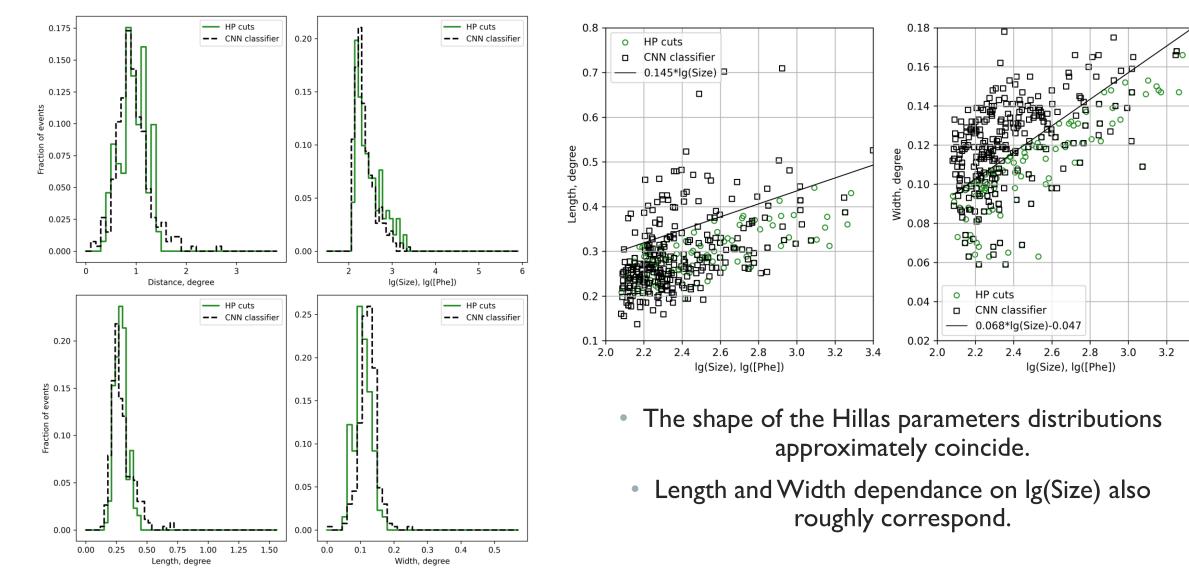
$$S_{LiMa} = \sqrt{2} \left\{ N_{on} \ln \left[\frac{1+\alpha}{\alpha} \left(\frac{N_{on}}{N_{on} + N_{off}} \right) \right] + N_{off} \ln \left[(1+\alpha) \left(\frac{N_{off}}{N_{on} + N_{off}} \right) \right] \right\}^{1/2}$$

Observation time, hours	Processing method	αN _{OFF}	N _{ON}	Excess	α	S _{LiMa}
	HP cuts	94	166	72	0.01	6.32
21,75	CNN (Alpha<20)	170.8	266	95.2	0.01	6.37
	CNN (Alpha<6)	84.2	157	72.8	0.01	6.67


• Coincidence – 46 events in ON-point (CNN (Alpha<20)).

SEPARATION OF THE GAMMA SIGNAL FROM THE CRAB NEBULA AND COMPARISON WITH STANDARD METHODS

- Background suppression is good for Alpha<6, yet, according simulation, we loose 50% before CNN classification;
 - S_{LiMa} doesn't differ more then $I\sigma$;
 - the difference in results is quite large for 291119 run atmosphere transparency fluctuation?


SEPARATION OF THE GAMMA SIGNAL FROM THE CRAB NEBULA AND COMPARISON WITH STANDARD METHODS

Observation time, hours	Processing method	αN _{OFF}	N _{on}	Excess	α	S
	HP cuts	94	160	66	1/10	5.84
21	CNN (Alpha<20)	161.8	253	91.2	1/10	6.26
	CNN (Alpha<6)	79.3	148	68.7	1/10	6.48

SEPARATION OF THE GAMMA SIGNAL FROM THE CRAB NEBULA AND COMPARISON WITH STANDARD METHODS

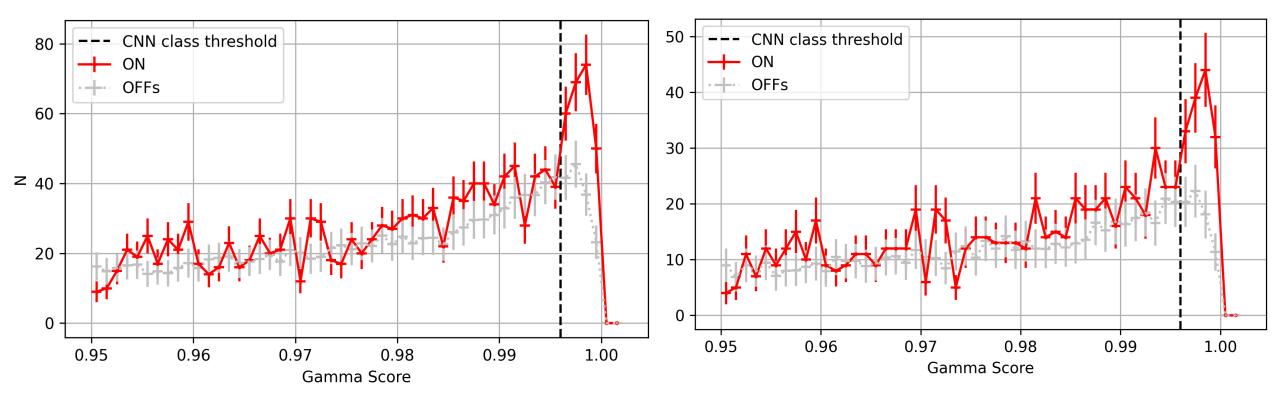
Hillas parameters distributions for ON point

3.4

CONCLUSION

- During this work conditions were obtained and applied for classifying data from Cherenkov telescopes when strong class imbalance occurred.
- Even though the complete separation was not achieved, CNN allows to separate gamma-like events on the same level of significance as Hillas Parameters cuts;
 - Thus, the signal from Crab Nebula were obtained on 6.6σ level of significance for 21 hours of observation time. 73 gamma events were obtained during this period of time.

• Perspectives:


- To process the more experimental data (the whole 2019-2020 season and others);
- To develop and test neural network methods for energy reconstruction and energy spectrum of observed by TAIGA-IACT sources;
- To process experimental data of different observe gamma sources with neural network methods;

THANK YOU FOR ATTENTION!

BACKGROUND SLIDES

• CNN with Alpha<6°

