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Background. 
Inverse problem of spectroscopy
Optical absorption spectra of multicomponent aqueous solutions of salts. 

Ions: Zn2+, Cu2+, Li+, Fe3+, Ni2+, NH4
+, SO4

2-, NO3
-.

 3744 spectra
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• Spectroscopic methods 
ensure remote and express 
sensing and provide a wide 
range of features that 
identify the constituents of 
water media

• High-dimensional and 
complex problem

• Requiring analysis of many 
spectral channels at once

• Such analysis may be 
performed using machine 
learning methods (ML), e.g. 
neural networks

 911 channels

concentrations – ?



Background. Baseline solution
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Challenges in acquiring 
spectroscopic datasets 
for inverse problem solving with ML 
• The experiments are laborious, expensive and                    

time-consuming
• Spectra registration requires complex equipment
• Data interpretation and labeling requires competent 

experts
• Obtaining a representative dataset requires a substantial 

amount of data
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To minimize the costs associated with increasing the data 
set, computer science community has developed a number 
of data augmentation techniques 



Augmentation. Problems
• Adding noise 

• Results in an increased noise resilience of the model, 
but not in a decrease in the inverse problem solution error

• Using interpolation

• The shape of the spectra is sensitive to the concentrations of 
ions, the dependence of spectral intensities on ion concentrations 
in multi-component solutions is complex and non-linear

• Using open resources 

• Lack of databases with various ion concentrations

• Lack of datasets with specific components

• Difficulties in adapting data patterns from different equipment 
to a single format
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Motivation

Increase the representativity 

of optical spectroscopy datasets 

via machine learning 
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Objective

• Challenges in acquiring spectroscopic data for ML
• Issues with standard augmentation methods



ML approaches
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Variational Autoencoder (VAE)
• Compresses the input 

signal into a signal of a 
smaller dimension in the 
latent space

• The information about 
the data in the latent 
space is represented as 
parameters of a certain 
multidimensional 
distribution 

• Allows generating 
samples from random 
vectors drawn from this 
distribution using the 
decoder 8
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Experimental pipeline: 
Variational Autoencoder (VAE)

௄௅

1) Training regression networks for each ion on experimental 
data. 
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2) Training VAE

Experimental pipeline: 
Variational Autoencoder (VAE)



11
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3) Generating patterns using VAE to double the size of the 
training dataset

Experimental pipeline: 
Variational Autoencoder (VAE)
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4) Determination of the ions concentrations in generated 
patterns using the trained regression models

Experimental pipeline: 
Variational Autoencoder (VAE)
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5) Training regression models on an extended training set 
of optical absorption spectra

Experimental pipeline: 
Variational Autoencoder (VAE)



Conditional Variational Autoencoder 
(cVAE)
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• Very similar to VAE

• The key difference:  
decoder receives both the 
spectral information and 
the corresponding sets of 
concentrations as inputs

• Allows generating spectra 
with specific desired 
concentration values



1) Training cVAE on spectra and 
corresponding concentrations

Experimental pipeline: 
Conditional Variational Autoencoder 
(cVAE)

15



2) Generating data using cVAE
to double the size of the training dataset
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Experimental pipeline: 
Conditional Variational Autoencoder 
(cVAE)



3) Training regression models 
on an extended training set 
of optical absorption spectra
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Experimental pipeline: 
Conditional Variational Autoencoder 
(cVAE)



Parameters of experiments 
• Data

• 3744 spectra
• 911 channels
• 8 ions

• Neural Networks 
Regression Neural Network for each ion

• 2 hidden layers (64 and 16 neurons)
• 1 output 
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• Experiments
• 8-fold cross-validation
• Adam, lr=0.001, 100 epochs

cVAE
Coder: MLP  

911 neurons in the input layer
256 neurons in the hidden layer
2*91 neurons in the output layer

Decoder: MLP  
91+8 neurons in the input layer
256 neurons in the hidden layer
911 neurons in the output layer

VAE 
Coder: MLP  

911 neurons in the input layer
256 neurons in the hidden layer
2*91 neurons in the output layer

Decoder: MLP  
91 neurons in the input layer
256 neurons in the hidden layer
911 neurons in the output layer



VAE-generated spectra. Analysis
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Experimental spectra VAE-generated spectra



Statistics by channels. VAE
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Experimental spectra VAE-generated spectra
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Comparison of experimental and VAE-generated spectra,
similar in the channel space

Similarity analysis. VAE
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Comparison of experimental and VAE-generated spectra 
with similar concentrations

Similarity analysis. VAE
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cVAE-generated spectra. Analysis

Experimental spectra cVAE-generated spectra



Statistics by channels. cVAE
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Experimental spectra cVAE-generated spectra



Similarity analysis. cVAE
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Comparison of experimental and cVAE-generated spectra, 
similar in the channel space
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Comparison of experimental and cVAE-generated spectra 
with similar concentrations

Similarity analysis. cVAE



Performance
• Extension of the training set with patterns generated by Variational 

Autoencoder (VAE), did not result in a decline in solution quality

• Using the cVAE for the same purpose increases errors 
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Conclusions. Discussion
• Conclusions

• With VAE it is possible to generate patterns that effectively mimic 
experimental spectra while still differing from them

• cVAE fails to generate valid samples, which may be due to the strategy 
for selecting concentration sets.

• Possible approaches in generation
• Uniform distribution in latent space
• Normal distribution in latent space

• Generation from the same distribution
• Generation from inverted distribution (equalization)

• Possible reasons for the hypothetical improvement 
• Noise reduction due to reduction of data dimensionality in latent space
• Distribution equalization
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Thank you for your attention
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Generating in the latent space
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