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Introduction

B Path integral in imaginary time:

©)s = [ Dle®)Ola®)] e 5=, a(0) =a(p). (1)

B Gibbs average:
1 _ 1 _
(O)s = Tr [e™PH 0] = 7 Y (n|O[n)eFFn. (2)

B Low temperature limit: ma (0Ys = (0]0|0).
— 00

B Theory on the lattice:

Dix(t)] = Hdwn =d"z, Sglz(t)] = Sg(z1,...,x,) = Sg(x). (3)

B QFT generalization: t — a*, z(t) — ¢(z).
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Monte Carlo calculation

B Average over a distribution:

(O)5 = /d"x O@) pla) ~ %Z o) (:E(j)> : (4)
j=1
where 1
{20} ~ pla) = o eS8, 5)

B Path integral calculation = generation of the samples {x(j)} with
target density distribution function.
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Markov chain Monte Carlo (Metropolis)

Starting with a sample of the «cold» trajectories:
Xo = {20}, 2 = 0. (6)

Random modification of the trajectories:

9 =29 o, W ~Ul-1,1). (7)
Replacement the trajectories (j) in the sample Xy with probabili-
ties )

L j
7(y?,29)) = min Py . ), 1 (8)
p(zV))

and obtain the new sample X;.

A sample chain Xy — X; — ... = X,,, has target density distribu-
tion function p(x) in the limit.



Markov chain Monte Carlo (Metropolis)

B Disadvantages:

B High computing costs and time are required;
B Unable to take into account the physical symmetries.
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Alternative approach

B Alternative approach: construction a map = = g(2), z = g~ (),
where z is a set of random variables with a certain density distri-
bution 7(z).

B Then target distribution p(-) and g(-) are connected as follows:

—1

8zi
det
)

: 9)

p(z) = 7(z)

_ -1 dg
= (g™ (o) faer

Ij X
B Neural Network as the map:
20) — g(z(j);w), (10)

where 2(/) ~ N™(0,1) and sample {x(/)} has target density distri-
bution p(z).



Neural Networks
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Figure 1 — Normalizing Flow scheme
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Figure 2 — Normalizing Flow architecture
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Normalizing Flows

The map g is a composition of affine transformations:
g=A,0..04; (11)

We divide z on two parts: z = u+wv, where, for example, u contains
coordinates with even numbers, and v with the odd one.

Alw) =u, [AW)]p = e"* W, + Ogp(u), 0:RY2 5 R™. (12)
Loss function reads as follows:

Loss(w) = Dow(py [|p) ~ 02 = [ d"py(z)linpy(z) + S(a).
(13

Orthogonal transform = = Og(z) was applied to account the shift
symmetry of the theory.
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Models

B Euclidean action:
Se(x1, ...y Ty —TZ i—Tim1) FV(z)], zo=zp, (14)

where K(-) and V(- ) are kinetic and potential energies terms.

B Non-relativistic model:

Hyin = -—, K()=—7—. (15)

Bl Relativistic model:

/2 2
Hkin: p2+m27ma K(f):%hl [mTKl(m 4 +£)

B Ultra-relativistic regime m — 0:

Hin=lpl, K©=-1h[x(Z+&)r).  (7)



Relativistic Oscillator
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Relativistic double well

H=+/p?+m2-m+ g(ac2 — x%)Q (19)
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Relativistic Morse

H =

a=0.125, N =256, B=32

p2+m2

+
m
2 L

eﬂm—QQ—@ (20)

a=0.125, N=256, B =32

@  XonoaHwiiA cTapT 41 e &  Xonogwwii crapT
& CTapT c naHHbIX HelpoceTy $ CTapT C paHHbix HelipoceTn
5
$ 4 :
4 ¢ L]
P .
<’ 52 5 »
X = . 2
R I R °
2 hd .
L
> o ee*3 000000
1 ° e
L] L]
L]
L] =1
0l]e o o0 e ® e
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
logaNs logaNs



13/14

Conclusions

The use of neural networks makes it possible to speed up the cal-
culation of functional integrals several times.

The approach is universal: acceleration is observed for different
models. This will allow it to be used for a wide range of tasks.

The symmetry of the problem is taken into account, which may be
especially important for applications to the theory of gauge fields.

The artificial intelligence algorithms used are quite simple. It is
expected to significantly improve the results by applying more so-
phisticated methods.



Thank you!
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