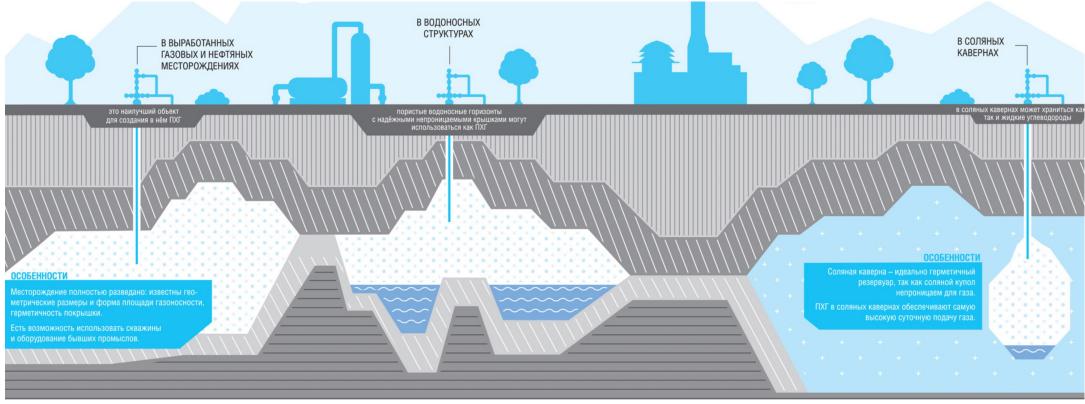


НЕЙРОННЫЕ ОПЕРАТОРЫ ДЛЯ ГИДРОДИНАМИЧЕСКОГО МОДЕЛИРОВАНИЯ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА

Подземное хранение газа

Подземные хранилища газа (ПХГ) – технологический комплекс, предназначенный для закачки, хранения и отбора газа, включающий наземные инженерно-технические сооружения, участок недр, ограниченный горным отводом; объект хранения газа, контрольные пласты; буферный объем газа; фонд скважин различного назначения.



Гидродинамическое моделирование ПХГ

Основное уравнение трехмерной неустановившейся однофазной фильтрации сжимаемого флюида (газа) в пористой среде получается путем подстановки закона сохранения импульса (закон фильтрации Дарси) в закон сохранения массы:

$$\frac{\partial}{\partial x} \left(\frac{A_x k_x}{\mu_g B_g} \frac{\partial p}{\partial x} \right) \Delta x + \frac{\partial}{\partial y} \left(\frac{A_y k_y}{\mu_g B_g} \frac{\partial p}{\partial y} \right) \Delta y + \frac{\partial}{\partial z} \left(\frac{A_z k_z}{\mu_g B_g} \frac{\partial p}{\partial z} \right) \Delta z = \frac{V_b \Phi T_{sc}}{p_{sc} T} \frac{\partial}{\partial t} \left(\frac{p}{Z} \right) - q_{gsc},$$

p — давление, q_{gsc} — дебит газа в стандартных условиях, $B_g = \frac{p_{sc}TZ}{T_{sc}p}$ — объемный коэффициент газовой фазы, Z — коэффициент сверхсжимаемости газа, μ_g — вязкость газа, T_{sc} — температура в стандартных условиях, p_{sc} — давление в стандартных условиях, p_{sc} — проницаемость, p_{sc} — площадь поперечного сечения породы, перпендикулярная направлению фильтрации.

Численные симуляторы: метод конечных объемов для аппроксимации системы дифференциальных уравнений по пространству + неявная схема для аппроксимации по времени. Время одного расчета может достигать нескольких часов.

Скорость расчетов является одним из определяющих факторов, влияющих на принятие управленческих решений, связанных с распределением закачки/отбора газа по скважинам и по площади.

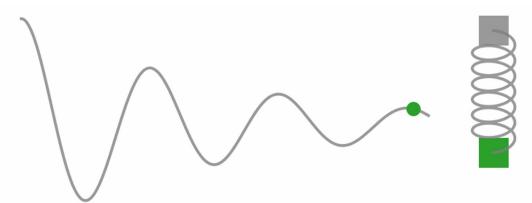
Цель работы

Цель: Построение и обучение специализированного класса нейронных сетей для ускорения гидродинамического моделирования ПХГ при допустимых потерях точности относительно традиционного численного моделирования.

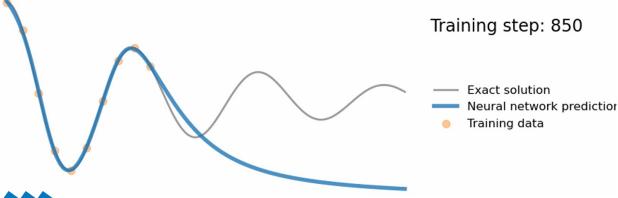
При успешной реализации данного подхода становится возможным:

- Поддержка принятия решений по распределению закачки/отбора газа по скважинам и по площади;
- Оценка возможных последствий на конец периода;
- Использование результатов для более верхнеуровневых расчетов.

Проблемы глубокого обучения в моделировании физических систем



Полносвязная нейронная сеть



Нейронная сеть – это отображение между конечномерными пространствами (наборами точек).

Физические процессы описываются дифференциальными уравнениями (ДУ) — объектами бесконечномерных (функциональных) пространств.

Как следствие – ограниченность нейросетевых моделей в предсказании поведения системы в условиях, отличных от тех, на которых они были обучены.

Могут ли нейронные сети аппроксимировать решения ДУ с заданной точностью?

Теоретически — могут (теорема Цыбенко, 1989)

Практически — PINN (2017), Neural Operators (2021)

Нейронные сети информированные физикой (PINN)

Berg J, Nyström K. (2017), Raissi M, Perdikaris P (2017)

На примере уравнения фильтрации:

Набор точек для обучения: $S = \mathcal{G}_{int} \cup \mathcal{G}_{tb} \cup \mathcal{G}_{sb}$

Произвольная нейронная сеть: $(x,t) o u_{ heta}(x,t),\; heta\in\Theta$

Вводятся невязки:

для начальных условий: $\mathcal{R}_{tb, heta} = u_{ heta}(\cdot,0) - ar{u}$

для граничных условий: $\mathcal{R}_{sb, heta} = u_{ heta}|_{\partial D}$

для левой и правой частей уравнения: $\mathcal{R}_{int, heta}=\partial_t u_ heta-\partial_{xx}u_ heta$

Производные получают с помощью механизма автодифференцирования Невязки добавляются в функцию потерь:

$$J = rac{1}{N_{tb}} \sum_{n=1}^{N_{tb}} |\mathcal{R}_{tb, heta}(x_n)|^2 + rac{1}{N_{sb}} \sum_{n=1}^{N_{sb}} |\mathcal{R}_{sb, heta}(x_n,t_n)|^2 + rac{1}{N_{int}} \sum_{n=1}^{N_{int}} |\mathcal{R}_{int, heta}|^2$$

Модель автоматически (по построению) будет аппроксимировать заданное уравнение в процессе обучения.

Преимущества PINN:

Интерпретируемы Не зависят от сетки дискретизации

Недостатки PINN:

Вычислительно затратны — требуется обучение для **каждой комбинации** начальных и граничных условий (!)

Возможны проблемы со сходимостью, поскольку функционал ошибки сложный многомерный.

Большинство исследований по PINN при решении прямых задач сфокусированы на игрушечных/упрощенных задачах, чтобы продемонстрировать Proof-of-Concept

Нейронные операторы (обобщение нейронных сетей до бесконечных размерностей)

Lu L, et al. (2020), Li Z, et al. (2020), Kovachki N, et al. (2021)

Абстрактное ДУЧП: $\mathcal{D}_a(u)=f$

Х, У– Банаховы пространства (входа и выхода ДУЧП)

Оператор решения: $\mathcal{G}: X o Y$ при $\mathcal{G}(a,f) = u$

Задача: Обучить оператор на имеющихся данных

Проблема – нейронные сети отображают конечномерные пространства, а в общем случае размерность пространств входа и выхода ДУЧП – бесконечномерная.

Идея — обучать модель в непосредственно функциональных пространствах.

Классические глубокие нейронные сети: $\mathcal{L}_{ heta}=\sigma_K\circ\sigma_{K-1}\circ\cdots\circ\sigma_1$ где отдельно взятый слой: $\sigma_k(y)=\sigma(A_ky+B_k)$

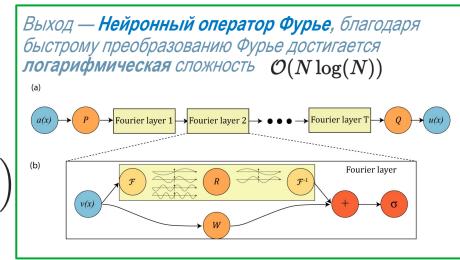
Нейронный оператор: $NO: \mathcal{N}_{\theta} = \mathcal{N}_L \,\circ\, \mathcal{N}_{L-1} \,\circ \cdots \circ\, \mathcal{N}_1$ отдельный скрытый слой: $\mathcal{N}_l v(x) = \sigma \left(A_l v(x) + B_l(x) + \int_D K_l(x,y) v(y) dy\right)$ где $K_l(x,y)$ — ядро интегрального оператора

Преимущества:

Качественно обученный нейронный оператор не требует повторного дообучения для различных реализаций ДУЧП

Недостатки:

В общем случае вычислительная сложность для каждого слоя — квадратичная $\sim \mathcal{O}(N^2)$



Модифицированный нейронный оператор Фурье (U-FNO)

Gege Wen, Zongyi Li (2022)

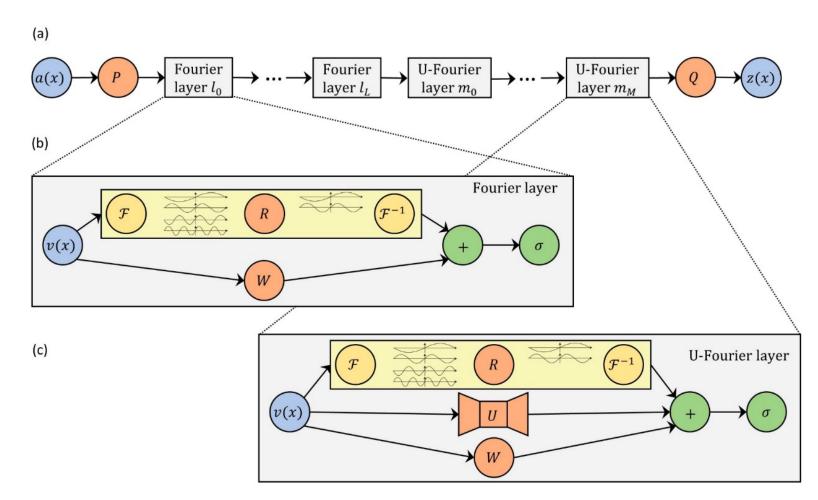
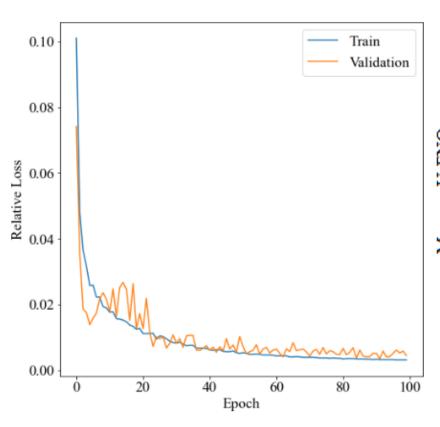
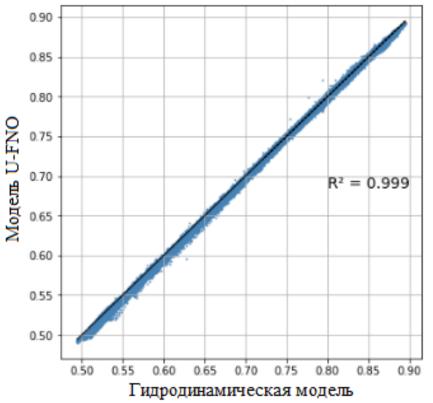


График функции потерь и оценка качества на тестовой выборке





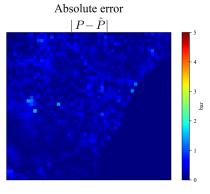
Статистические параметры ошиоок модели		
Среднее	Ст. откл.	Ед. изм.
0.006	0.2	кгс/см2

Визуализация пластового давления из ГДМ, обученного нейронного оператора и абсолютной ошибки на тестовой выборке

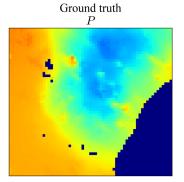
Time Step: 4/16

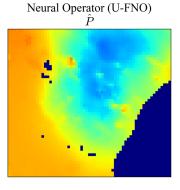
Ground truth P

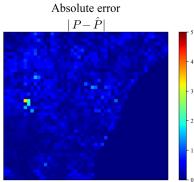
Neural Operator (U-FNO)



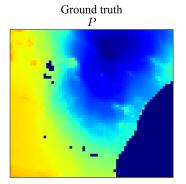
Time Step: 10/16

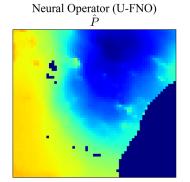


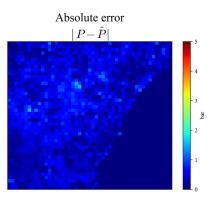




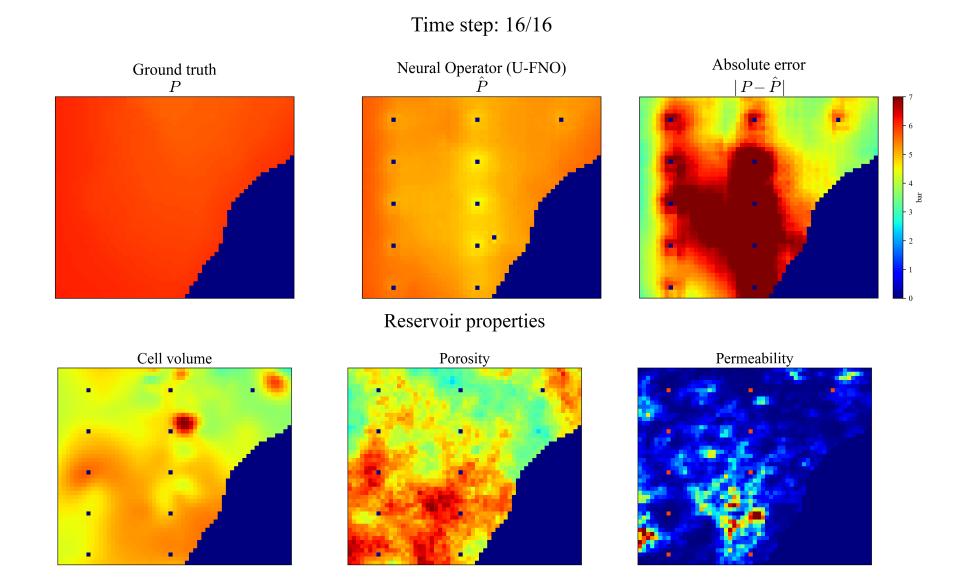
Time Step: 16/16





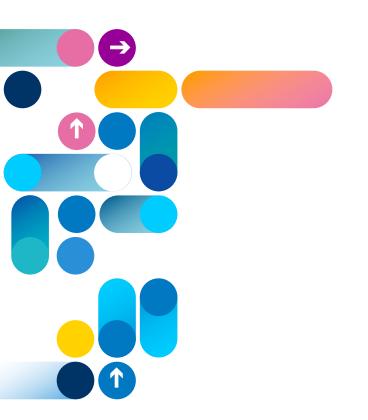


Визуализация результатов моделирования с учетом изменения фонда скважин



Заключение

- Построен и обучен оператор Фурье с добавлением слоев U-Net (U-FNO) для гидродинамического моделирования процессов фильтрации газа в ПХГ.
- Впервые показано, что данный метод может быть применен не только для задач моделирования фильтрации газа в цилиндрической системе координат с одной скважиной, но и для задач трехмерной фильтрации газа в декартовой системе координат с множеством скважин.
- Обученный нейронный оператор осуществляет моделирование заданного сценария за доли секунды, что по меньшей мере в 10⁶ раз быстрее, чем традиционный численный симулятор.
- Таким образом, становится возможным применение данной модели в задачах оптимизации режимов работы ПХГ.



СПАСИБО!

Вопросы, предложения, замечания: E-mail: D.Sirota@adm.gazprom.ru

tg: @ds11011