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SCIENTIFIC STUDIES IN GAMMA-ASTRONOMY 

 Its are the 

identification and 

research of high-

energy gamma 

radiation sources. 

 

 The flux, energy 

spectrum, direction of 

arrival helps to 

understand the 

generation mechanism 

of high energy gamma 

radiation and the 

morphology of sources. 2 

Supernova remnant (Crab Nebula) 

Active galactic nucleus 



TAIGA-IACT 

 Telescopes register 

Cherenkov radiation 

created during Extensive 

Air Showers (EASs). 

 

 

Image analysis techniques: 

 

 Hillas parameter – the 

image description by an 

ellipsoid with certain 

parameters; 

 

 The Machine Learning. 3 



A mathematical model of a neuron 

(perceptron) and a multilayer 

structure of an neural network: 
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THE MACHINE LEARNING: CONVOLUTIONAL 

NEURAL NETWORKS (CNN) 
CNN:  the presence of convolutional 

layers, where filters (or kernels) are 

applied that highlight more general 

structures and features in the image: 

 CNNs are one of the best ways to analyze images. 

 At the moment, the use of CNN for processing IACT images has not 
been implemented. 

 

Thus, this work will allow us to study perspectives of this 
method in relation to the processing of EAS images. 



Classification: 

 

 The separation of images 

from gamma photons and 

proton images. 
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THE MAIN TASKS SOLVED IN THIS WORK: 

Regression: 

 

 The recovery of the energy 

of the primary particle from 

the IACT image; 

 

 The comparison of the 

energy recovery quality in 

the case of observations 

with one and two 

telescopes. 



The data description: 

 Monte-Carlo events simulated with CORSIKA (provided by 

SINP MSU) 
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MODEL DATA 

Set Task 
Total events 

(gamma/proton) 

Train / 

validation 

separation 

Energies 

#1 (small) Classification 
30 000 

(17 500 / 12 500) 
20 000 / 10 000 

Hadron: 2-100 TeV 

γ: 1-60 TeV 

#2 (big) 
Classification+ 

regression 

200 000 

(100 000 / 100 000) 
160 000 / 40 000 

Hadron: 5-100 TeV 

γ: 2-50 TeV 

#3 Regression 
18 000 

(only gamma) 
12 000 / 6 000 1-50 TeV 

The training samples of small set (#1) were artificially 

expanded (6 times) by rotating the image each 60 degrees (as 

camera’s symmetry angle) 
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MODEL DATA 

Image preprocessing: 

 Cleaning: the zeroing out negative pixel values, after single 

non-zero pixels; 

 Pixelization: the conversion of a hexagonal image to a square 

form; 

 Scaling: Logarithmic scaling of pixel amplitudes (xi) by the 

formula: 

)xln(1
9

1
x~

ii


The principle of pixelization Example of pixelization and rotation the 

image each 60 degrees  



THE ARCHITECTURE OF CNNS: USER MODEL 

Classification Regression 

Gamma event probability  

(Error calculation – cross-entropy) 

Energy, TeV 

(Error calculation – MSE) 

Convolutional layers 

5 kernels : 5х5  

5 kernels : 3х3  

1 neuron, activation: sigmoid 

Dense layers 

450 n., dropout(0,4), activation - ReLU 

150 n., dropout(0,4), activation - ReLU 

50 n., dropout(0,4), activation - ReLU 

Image (31х31) 

Convolutional layers 

5 kernels : 5х5 

5 kernels : 3х3 

5 kernels : 3х3 + MaxPool(2x2) 

1 neuron, activation: linear 

Dense layers 

280 n., activation - ReLU 

140 n., activation - ReLU 

70 n., activation - ReLU 

Image (31х31) 
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THE ARCHITECTURE OF CNNS: RESNET AND 

GOOGLENET 
ResNet GoogLeNet 

Conv. 64 kernels : 5х5 + MaxPool(3x3) 

1 neuron 

3 ResNet’s blocks (128 k., 3х3) 

1 ResNet’s block (256 k., 3х3) 

Image (31х31) 

2 ResNet’s blocks (64 k., 3х3) 

AvrPooling(7x7) 

Conv. N kernels : mхm + BatchNorm 

Conv. N kernels : mхm + BatchNorm 

ResNet’s block (N k., mхm) 

Conv. 64 kernels : 5х5 + MaxPool(3x3) 

1 neuron 

Inception block 

Inception block 

Image (31х31) 

Inception block 

Conv. 192 kernels : 5х5 + MaxPool(3x3) 

Conv. 64 kernels : 1х1 

Conv. 192 kernels : 5х5 + MaxPool(3x3) 

1024 n. + dropout(0.7) 

Inception block 



 Classification estimation for analysis: 
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CLASSIFICATION: RESULTS 

total

g

h_gg_g

g_g

before

after

N

N

NN

N

S

S
Q




Training Ntotal Ng Nh Ng_g Nh_g Safter Q 

#1 10 000 5876 4124 2971 16 54,36 0,93 

#2 40 000 20 000 20 000 11677 180 107,24 1,07 

Data classification with balanced classes 

Ng_g – the number of true gamma events identified by the CNN as gammas; 

Nh_g – the number of proton events identified by the CNN as gammas events; 

Ng    –  the total number of gamma events in the set; 

Ntotal – the number of all events in the set. 

 The class separation threshold: the 50% of true gamma-quanta should 

remain. 

There is no improvement for classification with 

balanced classes 

 Achieved validation accuracy: 96% 
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 There is a strong imbalance in the fluxes of gamma radiation and 

cosmic rays (1:100 000) in real experiment. Therefore, a 

classification quality check was carried out for unbalanced classes. 

 

Training 

(#N_set) 
Ntotal Ng Nh Ng_g Nh_g Safter Q 

User model 

(#1) 
4 182 58 4 124 25 21 3,69 4,11 

User model 

(#2) 
36 783 35 36 748 13 187 0,92 5,04 

ResNet 

(#2) 
36 783 35 36 748 18 279 1,04 5,72 

GoogLeNet 

(#2) 
36 783 35 36 748 19 262 1,13 6,21 

CLASSIFICATION: RESULTS 

Data classification with unbalanced classes 

There is a good suppression of proton events, but 

significance is still low. 
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REGRESSION: RESULTS 

 Regression estimation: 
true

truepred

E

EE
  Rel_err




Epred – the energy predicted by CNN; 

Etrue – the true energy value. 

 32% relative error in case of mixed (gammas and protons) events;           

23-25% – in case of only gamma-photons. 

 Different CNN structure do not improve results significantly.  



 The second telescope was included in the CNN structure by 

adding a second channel with convolutional layers. 

 

 The MSE and relative error on validation samples decreased  

by half in stereo mode. 
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REGRESSION: MONO- AND STEREO-MODES 



 CNN classification suppresses the proton background greatly 
(around 100 times), but significance is low (around 1 sigma). 

 Regression showed the 24% for one telescope, and 14% – for 
two telescopes. 

 ResNet and GoogLeNet demonstrated a slight results 
improvement. 

 

 Thus, this method can be used for the energy restoration, as it 
gives good results. Also CNN for good background suppression 
can be considered as additional selection threshold. 

 

 Future plans: 

 Detailed comparison with traditional method of event selection 
(by Hillas parameters); 

 Study and application of this method for energy recovery in the 
case of observations by several (more than 2) telescopes; 

 Search and study of various CNN structures for solving the 
classification problem. 
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CONCLUSION 



THANK YOU FOR YOUR ATTENTION ! 



 



THE INVESTIGATION OF CNN ARCHITECTURES (#1) 

Training and validation for different learning rate 

Training and validation for different number of 

filters 

Training and validation for addition dropout-

regularization 



THE INVESTIGATION OF CNN ARCHITECTURES (#2) 

Training and validation different CNN’s 

(classification) 

Relative error for different layer order and 

for addition of MaxPool-regularization 

Training and validation different CNN’s 

(regression) 



log(Size) > 1,9 

Concentration > 0,55 

Ellipticity > 0,5 

Distance ∈ (0,3; 2,0) 

HILLAS PARAMETERS 

Ntotal Ng Nh Ng_g Nh_g Safter Q 

30000 17513 12487 2631 69 50,63 0,50 

12662 175 12487 29 69 2,93 1,88 

36783 35 36748 2 185 0,15 0,80 

Training Ntotal Ng Nh Ng_g Nh_g Safter Q 

#1 10 000 5876 4124 2971 16 54,36 0,93 

#2 40 000 20 000 20 000 11677 180 107,24 1,07 

Training Ntotal Ng Nh Ng_g Nh_g Safter Q 

User 

model 

(#1) 

4 182 58 4 124 25 21 3,69 4,11 

User 

model 

(#2) 

36 783 35 36 748 13 187 0,92 5,04 

ResNet 

(#2) 
36 783 35 36 748 18 279 1,04 5,72 

Googlenet 

(#2) 
36 783 35 36 748 19 262 1,13 6,21 


