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Abstract—Imaging atmospheric Cherenkov telescope (IACT)
arrays record images from air showers initiated by gamma rays
entering the atmosphere, allowing astrophysical sources to be
observed at very high energies. To maximize IACT sensitivity,
gamma-ray showers must be efficiently distinguished from the
dominant background of cosmic-ray showers using images from
multiple telescopes. A combination of convolutional neural net-
works (CNNs) with a recurrent neural network (RNN) has been
proposed to perform this task. Using CTLearn, an open source
Python package using deep learning to analyze data from IACTs,
with simulated data from the upcoming Cherenkov Telescope
Array (CTA), we implement a CNN-RNN network and find
no evidence that sorting telescope images by total amplitude
improves background rejection performance.

Index Terms—astrophysics, deep learning, convolutional neural
networks, recurrent neural networks

I. MOTIVATION

Very-high-energy (VHE; from about 20 GeV to 300 TeV)
gamma rays provide a critical probe of the Universe’s most
extreme environments, offering the opportunity to study exotic
astrophysics and fundamental physics at high energies and
cosmological distances. Gamma rays in this energy range can
be indirectly detected on the ground using arrays of imaging
atmospheric Cherenkov telescopes (IACTs), which detect the
Cherenkov light emitted from air showers produced by VHE
gamma rays when they are absorbed by the atmosphere.

A wide variety of scientific studies can be performed with
VHE gamma rays [1]. VHE gamma rays are observed from
supernova remnants and pulsar wind nebulae in the Milky Way
and supermassive black holes in distant galaxies, providing
insight into the nature of these sources, such as how and where
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in these sources particles are accelerated to relativistic ener-
gies. Astrophysicists also search for VHE gamma-ray emission
from dark-matter-dominated objects such as dwarf galaxies,
looking for gamma rays hypothesized to be produced by dark
matter annihilation or decay. In addition, IACTs play a key role
in multimessenger astronomy, regularly searching for VHE
emission produced by gamma-ray bursts and by the sources of
gravitational wave events, and having recently detected TeV
gamma-ray emission from a flaring blazar coincident with a
highly energetic neutrino detected by the IceCube Neutrino
Observatory [2].

Measurements with IACTs enable these scientific studies
by extracting information about VHE particles from the air
showers they produce in the atmosphere. In a conventional
IACT analysis, images from multiple telescopes are param-
eterized and stereoscopically combined to extract the spatial,
temporal, and calorimetric information of the originating VHE
particle.

II. GAMMA-RAY IMAGE ANALYSIS

The sensitivity of IACTs depends strongly on efficiently
rejecting the background of much more numerous cosmic-
ray showers, which resemble those produced by gamma rays
but tend to have a more complex morphology. Using the
information contained in the shapes of the shower images is
therefore critical to maximizing IACT sensitivity. Supervised
learning algorithms, like random forests and boosted decision
trees, have been shown to effectively classify IACT events
based on event-level parameters constructed using images from
multiple telescopes (e.g. [4]).

Deep learning techniques, such as convolutional neural
networks (CNNs), may be used to improve on these methods
because they do not require the images to be parameterized
and may therefore access features of these images that would
be washed out by the parameterization [5]. A deep learning
approach that combines CNNs with a recurrent neural network
(RNN) has been shown to improve background rejection
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(a) Example IACT image (b) Same image mapped using rebinning

Fig. 1. Left: An example IACT image from a CTA FlashCam camera simulation, illustrating the hexagonally spaced grid of pixels typical of many IACT
cameras. Right: The same image mapped to a square matrix of pixels by rebinning, which preserves the image’s overall amplitude. Both images are from [3].

performance using data from the H.E.S.S. IACT array [6].
In previous work, the input images to such a network have
been sorted by total amplitude. In this study, we apply a
similar model to simulated data from the Cherenkov Telescope
Array (CTA) [7], the next-generation observatory for gamma-
ray astronomy, to determine the effect of this sorting procedure
on classification performance.

III. CTLEARN

We implement our neural network model using CTLearn1

[8], an open-source Python package for using deep learning
to analyze pixel-wise camera data from arrays of IACTs.
CTLearn provides an application-specific framework for con-
figuring and training machine learning models with Tensor-
Flow2 and applying the trained models to generate predictions
on a test set [9]. CTLearn v0.3.0 was used for training the
models used in this work.

Through the associated DL1-Data-Handler package [10],
CTLearn can load and preprocess IACT data from any major
current- or next-generation IACT. In particular, because many
IACT cameras have pixels arranged in a hexagonal layout,
posing a challenge for convolutional neural networks that
conventionally require as input a rectangular matrix of input
pixels, DL1-Data-Handler provides a number of methods to
map hexagonally spaced pixels to a square grid. In this work,
the rebinning method was chosen (Fig. 1b), which is one
of several mapping methods that provide comparably good
performance [3].

1https://github.com/ctlearn-project/ctlearn
2https://www.tensorflow.org
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Fig. 2. Diagram of the CNN-RNN particle classification model implemented
in CTLearn, from [9]. The model uses a CNN block (labeled as a deep
convolutional network or DCN) to derive a vector representation of each image
in an event. The vectors are combined using a Long Short Term Memory
network (LSTM), a type of recurrent neural network (RNN).

IV. CNN-RNN PARTICLE CLASSIFICATION MODEL

A challenge of using deep learning methods with IACT
data is combining images from multiple telescopes providing
different views of an air shower event. Each event triggers
multiple telescopes, and the number of triggered telescopes
may vary from event to event.

One approach to deal with this challenge is to break the
problem into two stages. First, each image is processed into
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a vector representation by a CNN, using the same weight
parameters for each image. The vectors are then combined by
a recurrent neural network (RNN), a type of neural network
that takes as input a sequence of vectors, and, by maintaining
an internal state, produces an output vector that depends not
only on the most recent input but on all preceding inputs in
the sequence. This vector is then fed into a set of densely
connected layers that produce the final prediction. Connecting
these networks allows a single model trained end-to-end to
classify events consisting of images from multiple telescopes.

For this work, the built-in CNN-RNN model of CTLearn
was used, which implements an architecture similar to the
CRNN network presented in [6]. More details on the model
and the default hyperparameter settings that were used can be
found in [9]. The RNN in this model is specifically a Long
Short-Term Memory (LSTM) network.

Recurrent neural networks are capable of processing se-
quential data in which the ordering of inputs may affect
their interpretation. Therefore, having a meaningful ordering
of telescope images in a CNN-RNN network may improve
performance. In previous work using a CNN-RNN network for
classifying Cherenkov air showers as produced by a gamma
ray or a cosmic-ray proton, the telescope images were ordered
by total image amplitude, or size. As size can be considered
to be a proxy for proximity to the shower center, sorting on
this parameter may provide an ordering given the absence of
temporal information [6].

To understand the effect of this ordering on performance, we
trained two CNN-RNN networks as described above to classify
IACT images as produced by a gamma ray or a cosmic-ray
proton, changing only the ordering of the input images. As a
control, in one network the images were ordered by telescope
ID number, an arbitrary but consistent ordering, while in the
other the images were ordered by size. The networks were
trained using a sample of 250,000 simulated events from 25
FlashCam telescopes [11], part of a proposed CTA array in
Paranal, Chile. Ten percent of the events in the sample were
reserved as a validation set, which was not used for training.

Fig. 3. Validation accuracy of the CNN-RNN model with images ordered by
ID (dark blue) and total brightness (light blue) as a function of number of
training steps (batches of 16 events). The models reach respective accuracies
of 80.6% and 80.2%.

Fig. 4. Validation AUC with images ordered by ID (dark blue) and total
brightness (light blue) as a function of number of training steps (batches of
16 events). AUC is the numerically integrated area under the receiver operating
characteristic curve, measuring sensitivity and specificity. The models reach
respective AUCs of 0.899 and 0.894.

V. RESULTS AND DISCUSSION

The results of this experiment are shown in Fig. 3 and Fig. 4.
The validation metrics of the two models were approximately
the same, with those of the control model being slightly higher.
The control model attained validation accuracy and AUC of
80.6% and 0.899, while the model with images sorted by size
reached 80.2% and 0.894. We therefore find no evidence that
sorting images by size improves gamma-proton classification
performance with a CNN-RNN model.

This finding leaves open the possibility that a different
ordering of telescope images could result in improved per-
formance. In particular, an ordering which provides sufficient
information about the telescopes’ position on the ground could
help a CNN-RNN to perform stereoscopic reconstruction of
Cherenkov air showers. While ordering by size as a proxy for
distance to the shower center should provide some relative
position information, it is possible this information is too
incomplete to be useful to the network.

In addition to performing background rejection, deep learn-
ing algorithms could be used to determine the arrival direction
and energy of the particles initiating Cherenkov air showers
[12], tasks for which stereoscopic reconstruction is particularly
important. Ensuring that telescope position information is
effectively provided to CNN-RNN networks may therefore not
only improve their performance on background rejection but
also on additional tasks critical for IACT image analysis.
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