
Signal recognition and background suppression by matched filters
and neural networks for Tunka-Rex

Dmitry Shipilov for the Tunka-Rex Collaboration

Irkutsk State University

June 12, 2018

Dmitry Shipilov (ISU) MF and AE for Tunka-Rex June 12, 2018 1 / 25



Motivation

Using pulse-shape information for lowering the threshold of signal detection
Machine learning on traces with noise to extract features of background
We develop and compare matched filtering and autoencoder based on CNN
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Standard method of signal reconstruction

Analytic signal u(t) = s(t) + iH[s(t)], where H is Hilbert transformation

Envelope = Absolute value of analytic signal
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Simulation set

650k samples of Tunka background recorded in 2014-2017

CoREAS simulations of Tunka-Rex signals (25k samples)

Pulse is randomly located inside signal window (200 ns)

Using single polarization (v ×B)

Folded with Tunka-Rex hardware response
Upsampling:

Factor 64 for matched filtering
Factor 16 for machine learning

Dmitry Shipilov (ISU) MF and AE for Tunka-Rex June 12, 2018 4 / 25



Example of simulation
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Matched filtering

Matched filtering is based on the convolution of input trace with template,
maximum of which defines the position of the original signal

* =

Best performance of matched filtering is achieved in white noise conditions
and is proportional to the power (length) of template

Dmitry Shipilov (ISU) MF and AE for Tunka-Rex June 12, 2018 6 / 25



Templates for matched filtering

Templates obtained from averaging of many CoREAS simulations

Templates for proton and iron signals are the same

In the present work we use single template with width of 60 ns
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Threshold and amplitude reconstruction

Threshold is defined as 5% probability of false positives

Amplitude is estimated as f(
√
Acc) (amplitude of cross-correlation)
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Full-pipeline reconstruction with matched filtering

Matched filtering is implemented in Tunka-Rex fork of Auger Offline
Reconstruction of CoREAS simulations (reproduction of 2012-2014 events)
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Matched filtering has shown ability of detection of low-energy events

Reconstruction of signal properties is under development
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Chosen architecture (autoencoder)

Unsupervised neural network with compressed representation
Use Keras and Tensorflow with GPU support
Based of 1D convolution layers
ReLu (max(0, x)) activation function
Max pooling (and upsampling) after convolutional layers
Binary crossentopy loss function and RMSprop optimizer
Train networks via uDocker on SCC ForHLR II cluster
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Learning strategy and training pipeline

Datasets:
25k samples for training

Subsets grouped by amplitudes:
10 – 100 µV/m (used in present work)
100 – 200 µV/m
200 – 300 µV/m

Training and evaluation:
Depth (D) and number of filters per layer as free parameters
Primary evaluate by loss metrics
Blind test with full-pipeline Offline reconstruction

i-th encoding layer is described by the following (i = 1, ..., D):

Si = Smin × 2D−i

ni = 2i+N−1

where Si is a size of the i-th filter, ni is a number of filters per layer
D and N are free parameters; Smin = 16 is minimal size of layer (corresp. to few ns)
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Degrees of freedom

8 filters 16 filters 32 filters

Number of filters on 1st layer
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Degrees of freedom

Filter used in MF consists of 786 points
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Traces normalization

Traces should be normalized to 0–1 values, baseline should be located at 0.5 level

s′i =
si

max(ui)
+ 0.5, where ui is envelope of trace
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Example: correct identification
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True signal and noise are identified correctly, noise is removed
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Example: no identification
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True signal is heavily distorted by noise, and removed as background
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Example: double identification

500 600 700 800 900 1000

t (ns)

−80

−60

−40

−20

0

20

40

60

80

A
m

pl
it

ud
e

(µ
V

/
m

)

signal+noise

signal

denoised signal

Signal-like RFI is identified as signal
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Threshold and metrics

Threshold amplitude of denoised signal is defined as
5% tolerance to false positives
Efficiency: Nrec./Ntot.,
fraction of events passed the threshold
Purity: Nhit/Nrec.,
fraction of events with reconstructed position of the peak: |trec. − ttrue| < 5 ns
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Best architecture contains Ndof = 10240
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Full-pipeline reconstruction with autoencoder

Autoencoder is binded with Tunka-Rex fork of Auger Offline
Reconstruction of CoREAS simulations (reproduction of 2012-2014 events)
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Autoencoder shows performance similar to matched filtering

Reconstruction of signal position (TunRaC + Offline) and properties
is under development
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Conclusion

The signal reconstruction of Tunka-Rex is improved with matched filtering and
denoiser

Classical (MF) and modern (AE) approaches show the similar performance,
which is better than standard method.

Software is ready and almost implemented in standard reconstruction

Few remarks on machine learning1.
“Stack more layers” rule works, but requires larger training sets

Signal properties of denoised traces are under investigation

We plan to try different architectures of neural networks

1The work was funded by the Russian Science Foundation (the grant No. 18-41-06003)
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Working environment for neural networks

We create complete set of necessary tools for neural network’s training

Converter from ADST Root to NumPy Binary format

Tools for creating datasets, training networks and evaluating them

We train networks via uDocker on ForHLR II cluster

Binding with Offline
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Example feature extraction
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ReLu

ReLu (rectified linear unit) activation

f(x) = max(0,x)
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Max pooling

MaxPooling
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