

PyTorch Framework
Stanislav Polyakov

 SINP MSU

PyTorch (pytorch.org) is an open source machine
learning library for Python, based on Torch. It was
initially released in October 2016.
PyTorch implements machine learning tools
(including convolutions) and supports GPU
computations.

Neural networks

Artificial neural network is a mathematical object represented
by nodes, arranged in layers. An output of a node is a result of
an activation function applied to a linear combination of input
"signals", with weights associated with each input.

Activation functions are used to introduce nonlinearity.

The choice of a particular activation function may depend on a
problem. Typically the differentiable and/or easy to compute
functions are used.

Pictured are sigmoid function and rectifying linear unit (ReLU).

Activation functions

Training Neural Networks

Training a neural network means modifying its weights so that
its output gets closer to the desired result. To do that, we take a
set of training examples (x,y) where x is the input vector and y
is the result we want. We use some error or loss function L to
measure the distance between the network output N(x) and the
desired output y.

In a process called backpropagation of errors we find the partial
derivatives of L(N(x),y) with respect to the network's weights and
use numerical methods like gradient descent to minimize loss.

Backpropagation

Convolutional neural networks have convolutional layers that
apply the same operation, or "filter", to the subsets of input
("perceptive fields"), e.g. 3*3 or 5*5 areas.

Convolutional Networks

A convolutional layer typically applies multiple filters with
learnable weights to the same area and passes their outputs to
the next layers.

Convolution helps to solve problems such as image recognition.

(pictured is a result of applying a filter called edge detector)

Convolutional Networks

PyTorch has a lot of machine learning and in particular neural
network tools implemented. These include: construction
elements for neural networks (layers of different types such as
fully connected layers and convolutional layers, pooling tools,
activation functions etc.) and loss functions. The library
supports automatic computation of partial derivatives.

According to the reviews, PyTorch has good performance, is a
convenient tool (particularly for those familiar with Python), but
may sometimes lack in documentation because it is in early
beta.

PyTorch as a Machine Learning Library

An array of detectors is arranged in hexagonal grid. Each
detector only has 2 states (not activated and activated). From 0
to 2 ellipse-shaped areas are chosen randomly. The detector
inside an ellipse area has 30% chance to be activated. If the
ellipses have common area, the respective detectors have 51%
chance to be activated by either of the ellipses. Low-level (1%)
random noise is also added.

The problem is to find the number of ellipses, given the states
of the detectors.

Pilot Problem

Machine learning tools are not designed to handle hexagonal
grid. This poses a problem that can be addressed by three
approaches:

● Distort the initial hexagonal grid into a rectangular one (shifting
every other row by 1/2);

● Overlay the grid with a square grid of virtual detectors and
redestribute the data from the actual detectors between them;

● Use or create tools that properly handle the hexagonal grid.

Hexagonality

For the pilot problem, I mostly used the distortion approach:

 a simple non-convolutional network with 1 hidden layer – 66%
correct answers;

 a two-layer non-convolutional network – 70% correct answers;

 a convolutional network – 83% correct answers.

Overlay grid approach had similar results:

 convolutional network – 82%

"Hexagonal approach":

HexagDLy package was used

(computations were several times slower)

 convolutional network – 73% correct answers.

Pilot results

560 detectors arranged in hexagonal grid

data for two types of events is generated by the Monte-Carlo
algorithm

the task is to recognize the type of the event

first convolutional network – 67% (with bigger training set)

Physical problem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

