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Abstract

Blockchain technology is a booming new field in both computer science and economics
and other use cases than cryptocurrencies are on the rise. Permissioned blockchains are one
instance of the blockchain technique. In a permissioned blockchain the nodes which val-
idates new transactions are trusted. Permissioned blockchains and distributed databases
are essentially two different ways for storing data, but how do they compare in terms of
performance? This thesis compares Hyperledger Fabric to Apache Cassandra in four ex-
periments to investigate their insert and read latency. The experiments are executed using
Docker on an Azure virtual machine and the studied systems consist of up to 20 logical
nodes. Latency measurements are performed using varying network size and load. For
small networks, the insert latency of Cassandra is twice as high as that of Fabric, whereas
for larger networks Fabric has almost twice as high insert latencies as Cassandra. Fabric
has around 40 ms latency for reading data and Cassandra between 150 ms to 250 ms, thus
it scales better for reading. The insert latency of different workloads is heavily affected by
the configuration of Fabric and by the Docker overhead for Cassandra. The read latency is
not affected by different workloads for either system.
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Introduction

Blockchain technology is a booming new field in both computer science and economics. It
has been called the only truly disruptive new technology of the last few years. Blockchains
are essentially a data structure in the form of a chain of cryptographically linked blocks of
data stored over a peer-to-peer network. New blocks are continuously added to the chain
when new transactions are issued. The key features of blockchains are the immutability
of data and full decentralization, and they promise both scalability and anonymity. The
first instance of this technique was the cryptocurrency Bitcoin and several other cryp-
tocurrencies emerged shortly after. This cryptocurrency evolution has the economists
predicting the end of banks as we know them but there is also a growing concern for
the possible downsideﬂlﬂ Now the world is looking at other areas of possible adop-
tions for the blockchains. There have been some adoptions of this technique, includ-
ing dating platform Singaporean ride sharing servicesﬁ and pork origin tracking in
Taiwarﬂ The blockchain technology is in an expansive phase, where more and more
companies want to be early adopters and utilize this technology in their own businesses.

Blockchains can be both private and public, public means that anyone can access the
blockchain at any given time, and private means that the blockchain only can be accessed
by trusted peers. They can also have different permission properties, which refers to the
amount of trust placed in the peers. A permissionless blockchain allows anyone to vali-
date transactions whereas a permissioned blockchain only allows peers with permission
to validate. The original blockchain, the Bitcoin blockchain, is public and permissionless,
meaning that anyone can join and approve transactions. Permissionless blockchains can
achieve distributed consensus by several techniques, the most common ones are Proof-
of-Work (PoW) and Proof-of-Stake (PoS). PoW is what the Bitcoin blockchain uses and it
is a cryptographic puzzle with is very computationally heavy to solve. This makes the

1https: / /www.bloomberg.com/news/articles/2017-12-15/what-the-world-s-central-banks-are-saying-about-
cryptocurrencies

thtps: / /www.imf.org/en/News/Articles/2017/09/28 /sp092917-central-banking-and-fintech-a-brave-new-
world

3htt-ps: //www.meetluna.com/

*https:/ /vulcanpost.com /644448 / tada-ride-hailing-app-blockchain-singapore /

Shttps:/ /www.bloomberg.com /news/articles/2018-03-22 / ex-googler-wants-to-upend-pigs-and-hotels-with-
the-blockchain



1.1. Motivation

permissionless blockchains resilient towards a large number of so called Sybil attacks and
provides strong guarantees on integrity [11]. But since PoW is computationally heavy it
comes with high energy consumption of the peers and requires participating peers to be
hosted on high performance machines. PoS is another option which exists in many vari-
ants, but the common feature is that peers with higher stakes e.g. more money are more
likely to be selected to validate new blocks. In permissioned blockchains PoW or PoS isn’t
needed since all peers are trusted, which gives large benefits in terms of energy consumption.

The emergence of these permissioned blockchains has got the blockchain community ask, are
they really blockchains ﬂ Others think that it is with the permissioned blockchains
that we will see the most successful adaptations in the short termﬂ One can go fur-
ther and ask if we have a trusting environment and want to store data in a decentral-
ized way, do we really need a blockchain? Wouldn’t a distributed database also tick
the boxes of decentralized and scalability that the blockchain promises? Databases have
been in use for many years, and we know what to expect from them since they are a
more mature technique. The performance of distributed databases has been researched
and benchmarked for years. However, a systematic study of private and permissioned
blockchains in terms of their added values with respect to performance has not been done yet.

Blockchain technology is a relatively new technology and the most widely used implemen-
tations are public and/or permissionless, for example Bitcoirﬂ and Ethereurrm The focus
of this thesis is blockchains on the other end of the spectrum, the private and permissioned
blockchains. When it comes to open-source frameworks there are few options available for
permissioned and private blockchains. Distributed databases are an older technique than
blockchain technology and there are many open-source options on the market.

1.1 Motivation

Permissioned blockchains are being proposed as a means of making, for example, supply
chain transactions and property transactions more transparent. Permissioned blockchains
and distributed databases are essentially two different ways of storing data in a distributed
system. If a company is at a crossroads and wants to choose either a permissioned blockchain
or a distributed database, the performance is a key factor to consider. The two most com-
monly performed operations on a distributed storage solution, blockchain or database, are
reading and inserting data. For distributed databases the Yahoo! Cloud Serving Benchmark
(YCSB) has been used since 2010 as a benchmarking tool [8]. Permissioned blockchains are
still new but Blockbench is an attempt on a benchmarking tool for them [10]. So far no re-
search has been done to compare the performance of the different technologies, which is what
this thesis aims to do.

1.2 Aim

The aim of this thesis is to evaluate and compare the latency of one permissioned blockchain
and one distributed database. These two state of the art frameworks are selected based on
a number of criteria. The latency in this thesis is defined as the round trip time of either
reading a value from the system or inserting a new value to the system. Since the architecture
of blockchains and distributed databases are fundamentally different the goal is to see how

Shttps:/ /baswisselink.com /articles/permissioned-blockchains-why-they-are-silly /

"https:/ /www.theverge.com/2018/3/7 /17091766 /blockchain-bitcoin-ethereum-cryptocurrency-meaning
8https:/ /blocksplain.com /2018/02/07 / permissioned-blockchains/

Swww.bitcoin.com

10www.ethereum.org



1.3. Research Questions

much the performance of these two basic operations differs. The scalability of the systems is
measured as the change in latency when the load is held constant and the number of nodes
increases. The changes in latency under different workloads is also a subject of study.

1.3 Research Questions

Given the introduction to the subject the following research questions will be answered in
this thesis.

1. Which frameworks are most suitable to choose as representative for each technique?

How can one framework implementing each technique be chosen in order to make a
fair and representative comparison?

2. What is the difference in latency between the two chosen frameworks when inserting
new values?

In particular, will the insert latency depend on the size of the system and how much
will the latency differ between two systems of similar size?

3. What is the difference in latency between the two chosen frameworks when reading
values?

In particular, will the read latency depend on the size of the system and how much will
the latency differ between two systems of similar size?

4. How does the latency of the two chosen frameworks change under different workloads?

Will the insert latency and read latency be affected by different mixes of read and insert
operations or by different loads on the system?

1.4 Method Overview

The outcome of this thesis is a comparison between the two storage techniques, distributed
databases and permissioned blockchains. Only one instance of each technique is compared
and these two are selected based on a number of criteria. The metrics are the scalability as a
function of the insert latency and read latency. These metrics are measured in a series of four
tests conducted on a virtual machine hosted on a virtual platform. The work includes finding
a limit of possible network sizes to use for the tests. The scalability is measured for networks
of varying numbers of participating nodes. Two of the tests in this thesis measure the latency
of both systems as a function of different workloads on networks of constant size.

1.5 Delimitations

Although the selected frameworks are representative, this thesis is not a general comparison
between distributed databases and permissioned blockchains. Neither does this thesis com-
pare the application-dependent performance but focuses on the latency of insert and read
operations. The thesis only compares relatively small systems of up to 20 nodes due to choice
of method, this is discussed further in chapter[4.4]

1.6 Thesis Outline

The outline of this thesis is as follows, chapter 2] covers the relevant theory and terminology.
It focuses on the architecture of Fabric and Cassandra and how they do inserts but also cov-
ers the related work of benchmarking permissioned blockchains and distributed databases.



1.6. Thesis Outline

Chapter 3| discusses the choice of platforms and frameworks. The experiment design is de-
scribed in chapter [ along with the evaluation metrics. Chapter [f| contains the result of the
experiments. Chapter [f] discusses the found results, criticizes the method and touches upon
the work in a wider context.



Background

This chapter covers the theory needed to understand the work in this thesis. Replication of
data in distributed systems is the topic of section Section describes the visualiza-
tion software Docker. In order to understand this thesis it is important to understand what
blockchain technology is and what properties blockchains have, this can be found in section
2.3l Section[2.4] cover the foundations of distributed databases. The last section 2.5 lists and
discusses related research on permissioned blockchains and distributed databases.

2.1 Replication of Data in Distributed Systems

Replication of data is a technique widely used in distributed systems, it serves to
maintain copies of data on multiple nodes. Blockchains and databases have differ-
ent approaches to replication of data. In blockchains all nodes in the system keep
a copy of the data while in many database systems the replication factor is tunable.

Replication comes with both rewards and challenges and the topic is well covered such
as the book by Coulouris et al. [9]. Done properly replication can enhance performance since
the workload can be spread out over several nodes according to Coulouris et al. But it can
also introduce challenges since making sure that all copies are up-to-date creates overhead
and is therefore can have a negative impact on performance. Increased availability can also
be gained since a system with replication can tolerate one, or possibly several, node crashes
and still provide data to users. However, Coulouris et al. also point out that high availability
doesn’t necessarily mean that the user will receive up-to-date data, the system might provide
stale data. Therefore, it is important to consider how many replicas to use if the system
should be fault-tolerant and which fault models the system should be tolerant towards. If
the system has a Byzantine fault model and it is assumed that f servers can exhibit Byzantine
failures, then 3f+1 servers are needed in total to maintain a working system [9]. On the other
hand, if f nodes in a system of f+1 nodes crash, the one still standing is sufficient for fail-stop
or crash failures [9]. In conclusion, prioritizing between consistency and availability and
considering fault models are both important aspects when choosing the number of replicas.



2.2. Docker - OS-Level Virtualization Software

2.2 Docker - OS-Level Virtualization Software

Docker is a container platform, not to be confused with a virtual machine because it does
not contain a guest OS. Docker is a thin layer which runs on the host OS. Containers runs on
top of Docker, see figure A container is a lightweight, executable version of a program,
containing what is needed for it to run on top of Docker as well as the source code and
dependenciesﬂ Each container is separate from the other containers and multiple containers
can be run simultaneouslyﬂ Docker can be used for quick development, deployment and
managing of software. When deploying a distributed system on a local machine it can be
very useful since the containers provide different silos for each node to run in and Docker
can emulate a network between the nodes.

Containerized applications

AppA App B App C App D App E

Docker ‘

Host Operating System ‘

Infrastructure ‘

Figure 2.1: Overview of Docker

2.3 Blockchains

The technology of blockchains was first invented as the architecture of the cryptocurrency
Bitcoin by the person, or people, behind the name Satoshi Nakamoto[18]. Their paper
presents blockchains as distributed, decentralized, immutable and promise both scalability
and anonymity of the peers using the technique. Nakamoto presents the blockchain as a de-
centralized system where each node holds a copy of the ledger, which is an append-only list
of blocks which starts with a genesis block. A block added to the chain is never removed.
Each block holds a cryptographic hash of the previous block in the chain, a timestamp and
a payload specific to the purpose of the blockchain. In the Bitcoin blockchain the payload is
transactions of bitcoins but it can also be other types of data such as supply chain information
or land rights. A blockchain is typically managed by a peer-to-peer network.

2.3.1 Cryptography

An fundamental buildning block of blockchains is the use of cryptography. The linking of the
blocks in the blockchain is done by taking the cryptographic hashes of the previous block and
storing them in the block header[18]. This linking of the blocks is what makes the blockchain
immutable. If a committed block is altered, the cryptographic hash will change. If the hash of
one block changes, the following blocks will no longer link to the correct predecessor and the
blockchain will be broken. The information stored in each block on the blockchain is stored
in a Merkle tree, which is a hash tree in which every leaf contains the hash of a data block and
each non-leaf node contains the cryptographic hash of its children. Only the hash of the root

IDocker Inc. What is a Container | Docker. 2018. URL: https://www.docker.com/what-container (visited on
07/24/2018).
2https: / /www.docker.com/what-docker



2.4. Distributed Databases

of the Merkle tree is stored in the block header, this makes it possible to compress information
in blocks without breaking the chain[18].

2.3.2 Permission Properties and Blockchain Scope

Blockchains can have different permission properties and blockchain scope, this is two of the
design decisions discussed by Xu et al. [24]. The permission properties refers to the amount
of trust placed in the peers according to Xu et al. The permission properties can either be
permissionless or permissioned. Xu et al. defines permissionless blockchain as blockchains
where no permission is needed for peers to join and validate transactions. In a permis-
sionless blockchain there can be no trust placed in the peers and the system needs to rely
upon techniques such as PoOW and PoS to establish trust in a trustless system. Examples of
permissionless blockchain frameworks are Bitcoin and Ethereum. Permissioned blockchain
are defined by Xu et al. as blockchains where some authority needs to give permission to
peers to allow them to participate, the peers with permission are trusted. When the peers
can be trusted there are no need for PoW or Pos. Examples of permissioned blockchain
are Fabric and Ripple, which is a payment infrastructure. Some blockchain frameworks
are permissionable, which means that they can be configured to be either permissionless
or permissioned. One example of a permissionable framework is Hyperledger Sawtooth.

Xu et al. [24] defines the scope of the blockchain as the defining factor which decides if
the network is public, private or a consortium/community blockchain. The question of
private or public is a question of the anonymity of the peers. A blockchain is defined as a
blockchain which is public can be accessed anonymously by anyone at any given time by
Xu et al., Bitcoin is an example of this. This means that the information on the blockchain is
viewable by anyone but it is not open for anyone to be a node in the blockchain network nor
approve on transactions. Xu et al. defines a blockchain as private if it can only be accessed by
a certain trusted peers, for example like the blockchains Ripple or Eris. The number of these
trusted peers may vary over time and they are not anonymous.

2.4 Distributed Databases

A database is an organized collection of data which is stored electronically. Databases have
a database management system (DBMS) which interacts with end-users and applications as
well as manages the data in the database. In recent years DBMS have become synonymous
with database [1]] and this thesis uses the term database as a synonym to DBMS.

Databases can be classified in different ways, by the data they contain, by their application
area or by specific technical aspects they exhibit. One category of databases are distributed
database, where both the data and the DBMS are distributed over several computers. This is
the type of database that are of interest in this work. According to Ozsu and Valduriez [[19]
a distributed database is defined as "a collection of multiple, logically interrelated databases
distributed over a computer network" and a distributed database management system as
"the system software that permits the management of the distributed database and makes
the distribution transparent to the users". The term distributed database in this thesis refers
to both the distributed database and the distributed database management system. Ozsu and
Valduriez also categories distributed databases in to three classes based on their architecture:

e Peer-to-peer systems
e Client/Server systems

e Multidatabase systems



2.5. Related work

Databases can store and organize data in different ways. The relation model was introduced
by Codd [7] in 1970 in which Codd suggested a data model based on the mathematical re-
lationship between data to prevent disruptive changes in formatted data systems. These are
now called relation databases and they store data in tables, where each table described the
relationship of the data[1]]. Relation databases poor scaling horizontally and this caused the
emerge of so called NoSQL system, "Not Only SQL" systems, which provide good horizontal
scaling for simple read and write databases [6].

2.5 Related work

This section lists and discusses related research in the field. To the best of our knowledge there
has been no comparison between the latency of permissioned blockchains and distributed
databases yet. Therefore, this chapter is divided into two parts, one for the related work on
permissioned blockchain and one for the related work on distributed database. The related
work presented has influenced the choices of metrics and measurement methodology. The
presented work also acts as a source of checking validity of values obtained in this thesis and
will be discussed in more detail in chapter|6}

2.5.1 Permissioned Blockchains

Dinh et al.[10] construct a framework for benchmarking private blockchains, called Block-
bench. They evaluate three different private blockchains, Ethereum, Parity and Hyperledger
Fabric. One of the metrics is latency as the response time per transaction, which is similar
to this thesis. They also evaluated scalability with respect to changes in throughput and
latency. So far no standard for benchmarking permissioned blockchains has emerged, but
this is an attempt to create a standardized benchmarking tool for permissioned blockchains.

Androulaki et al. [3]] present the Hyperledger Fabric architecture and perform some bench-
marking. The experiments presented measure six different aspects of Fabric to see how they
affected the performance in terms of throughput and end-to-end latency.

2.5.2 Distributed Databases

When it comes to distributed databases several studies on benchmarking them have been
conducted. Below is a list of some studies on benchmarking or evaluating the latency of
distributed databases.

e Cooper et al. [§] introduce the The Yahoo! Cloud Serving Benchmark, YCSB, which
includes several workloads. This benchmark is often used in research.

Kuhlenkamp et al. [15] compare Cassandra and Hbase based on YSCB.

Abramova et al. [1] compare Cassandra and MongoDB by using workloads from YCSB.

Abramova et al. [2] evaluate the scalability of Cassandra using YCSB.

Wada et al. [23] evaluate the eventual consistency of 4 different NoSQL databases, in-
cluding Cassandra

For this thesis only two related works have been chosen as representatives for the work in this
area. The first is the work by Cooper et al. [§] since it introduces the YSCB which is frequently
used for benchmarking. The second is the work by Kuhlenkamp et al. [15] since the authors
based their tests on previous research and compare their own results to the results of others.

Cooper et al. [8] introduces the YCSB with some experiments on performance and scal-
ing on four different database systems, Cassandra, HBase, PNUTS and sharded MySQL. One

8



2.5. Related work

of the scaling tests measures the latency of a workload which only consists of read operations
when increasing the number of nodes. They have used clusters up to 12 nodes for their work.

Kuhlenkamp et al. [15] compares scalability and elasticity of Cassandra and HBase. The
authors base their test on the YCSB benchmarking tools and replicated the workloads. The
authors used three different cluster sizes in all their tests, 4, 8 and 12 nodes. One of the
workloads are read intense and the result was the latency of performing read operations.
Another workload used was write intense and the result was the latency of performing write
operations.



Choice of Platforms

This chapter describes the method and the requirements of choosing the two frameworks to
compare. The goal is to choose one state of the art permissioned blockchain framework and
one state of the art distributed database which can be compared to each other as closely as
possible. Both the blockchain and the database had to be open-source and published under a
license which allowed them to be used in an educational context. There are fewer blockchain
frameworks available at this stage than distributed databases, simply because blockchain is a
much newer technique. Therefore, the blockchain framework was chosen first and limitations
or features of the blockchain framework were used to choose distributed database as well.

Section described the selection of the blockchain framework and section describes
the selection of the database frameworks. Section [3.3| contains the necessary theory for cho-
sen the permissioned blockchain framework and section [3.4 covers the theory of the chosen
distributed database. This chapter also lists and evaluated the different cloud solutions
available and the support they have for the frameworks, see section 3.5

3.1 Permissioned Blockchain Frameworks

This section describes and compares a selection of permissioned blockchain frameworks.
When it comes to open-source frameworks there are few options available for permissioned
and private blockchains. For this thesis the choice was that the framework for the blockchain
should not be specific to cryptocurrency applications. This is because this thesis aims to make
a more general comparison between the two storage techniques and not focus on specific ap-
plications. The desired properties of the blockchain framework for this thesis are:

e The permission property should preferably be permissioned, or at the very least per-
missionable.

e The framework should preferably be benchmarked in literature to make it easier to
evaluate the validity of the work.

e The blockchain scope should be private or possible to configure to private.

e The underlying architecture should be peer-to-peer.

10



3.1. Permissioned Blockchain Frameworks

e There should be documentation of the framework publicly available to make deploy-
ment easier.

e The project should be active in the sense that new updates have been released under
2018.

The items in this list are the criteria for the choice of the blockchain framework. Below are
subsections describing a selection of blockchain frameworks that are permissioned, private,
and not specific to cryptocurrency.

3.1.1 MultiChain

MultiChain is a framework for private and permissionable blockchains presented in a white
paper by Greenspan [13]]. The source code was forked from Bitcoin and was then extended.
MultiChain is configurable in many ways, for example the permission property and level of
consensus. One of the key features presented by Greenspan is the mining diversity, a round
robin schedule which selects the validator of each block. In version 2.0, which is still in devel-
opment as of August 2018 but available as a preview, MultiChain will support applications
other than cryptocurrency. It is primarily intended as a framework for private blockchain
within or between organizations according to Greenspan.

3.1.2 Hyperledger Fabric

Hyperledger is a collection of open-source blockchain frameworks developed in the context
of an initiative from the Linux Foundation. In the Hyperledger family there are several frame-
works for blockchains and the project called Fabric is highly modular and permissioned. An
instance of the Fabric blockchain framework consists of a peer-to-peer network, which con-
tains nodes, a membership service provider (MSP), an ordering service, smart contracts or
chaincode, and the ledger [3].

3.1.3 OpenChain

OpenChain is an open-source framework for distributed ledgers which leverages blockchain
technology. OpenChain is a framework for permissioned distributed ledgers which runs on
a client-server architecture with configurable blockchain scope. According to OpenChain
documentation OpenChain is not strictly a blockchain but rather it cryptographically links
each transaction to the previous transaction instead of bundling transactions into blocks that
are linke OpenChain supports running smart contracts and is therefore not specific to
cryptocurrency.

3.1.4 HydraChain

HydraChain is a framework for permissioned and private blockchains, and it is an extension
of Ethereum. It is fully compatible with Ethereum protocols and smart contracts. Developers
can also write their own smart contracts in Python. HydraChain requires a quorum of the
validators to sign each block as its consensus mechanism

3.1.5 Hyperledger Sawtooth

Sawtooth is another open-source project under the Hyperledger umbrella. It is a framework
for running permissionable distributed ledgers. Since it is permissionable it can be configured
to be either permissioned or permissionless. Sawtooth provides a clear separation between

1h’ttps: / /docs.openchain.org/en/latest/general/overview.html#what-is-openchain
2https: / /github.com/HydraChain/hydrachain
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the platform on which the application is running and the application, the smart contracts,
itselflﬂ Smart contracts can be written by the developer in Python, JavaScript, Go, C++, Java,
or Rust. Sawtooth also enables transactions to be executed in parallel and is compatible with

Ethereum.

3.1.6 Choosing a Permissioned Blockchain Framework

Table [3.1| lists the chosen blockchain frameworks together with their compatibility with the
desired properties.

Table 3.1: Overview of blockchain frameworks

Name Permission Bench- Blockchain Architecture | Docu- Active
properties marked | scope mentation | project
MultiChain | Permissionable | No Configurable | P2P Limited Yes
Fabric Permissioned Yes Private P2P Yes Yes
OpenChain | Permissioned | No Configurable geli‘f/r; ) Yes No
HydraChain | Permissioned No Private P2P Limited No
Sawtooth Permissionable | No Private P2P Yes Yes

OpenChain has the wrong architecture and HydraChain isn’t an active project which makes
both of them disqualified. As can be seen in table both MultiChain and Sawtooth match
all criteria, except being benchmarked in published literature. Fabric matches all require-
ments and is featured in several published papers. The latency of Fabric is benchmarked
in papers by both Androulaki et al. [3] and Dinh et al. [10]. The consensus process is also
benchmarked by Sukhwani et al. [21]. For these reasons Hyperledger Fabric was chosen as
the permissioned blockchain.

3.2 Distributed Database Frameworks

This section describes and compares a selection of distributed database frameworks that are
considered for this thesis. In order to make a fair comparison the two system needs to resem-
ble each other as much as possible. This means that since the developers of Fabric strongly
recommends to run it within Docker, this is a requirement for the database. Fabric runs on a
peer-to-peer network, which makes it preferable for the database to do the same but it isn’t a
strict requirement. The requirements of the database in this thesis are:

e The framework should preferably be benchmarked in literature to make it easier to
evaluate the validity of the work.

e The underlying architecture should preferably be peer-to-peer.
e The framework needs to run on Docker.

o There should be documentation of the framework publicly available to make deploy-
ment easier.

o The project should be active in the sense that new updates have been released under
2018.

Below subsections lists and describes a selection of open-source distributed database frame-
works.

Shttps :/ /sawtooth.hyperledger.org/docs/core/releases/latest /introduction.html
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3.2.1 MongoDB

MongoDB is a distributed NoSQL database which stores data in JSON-like documents, not in
tableﬁ This database uses replica set as a way of categorizing their replicas. A replica set is
a group of nodes that maintain the same dataseﬂ In a replica set there are one primary node
which receives all the writes and the other nodes are secondary. MongoDB is open-source
and supports over 10 programming languages.

3.2.2 Hadoop Distributed File System

The Hadoop Distributed File System (HDEFS) is an open-source distributed file system under
the Apache Hadoop project. HDFS is tuned to support large datasets and is optimal for batch
processing rather than interactive sessions ﬂ HDFS has a master-slave architecture where
master nodes control the namespace and file access and the slave nodes manage storage.

3.2.3 HBase

HBase is an open-source NoSQL distributed database from The Apache Software Foundation.
This database is tuned for very large data sets, preferably over hundreds of millions of rowsﬂ
HBase is an extension of HDFS and therefore also runs of a master-slave architecture.

3.2.4 Apache Cassandra

Apache Cassandra is a NoSQL distributed database originally developed by Facebook to
accommodate its growing storage need [16]. Every node is identical in Cassandra and it is a
full distributed system running on a peer to peer network.

3.2.5 Choosing a Distributed Database Framework

The investigated frameworks and their compatibility to the requirements are listed in table

Table 3.2: Overview of frameworks for distributed databases

Name Benchmarked | Architecture | Runs on | Documentation | Active
in literature Docker available project
MongoDB | Yes pP2P Yes Yes Yes
HDFS Yes Master-slave | Yes Yes Yes
HBase Yes Master-slave | No Yes Yes
Cassandra | Yes P2pr Yes Yes Yes

Both HBase and HDFS are tuned for very large datasets and better for batch processing, since
this thesis will have rather small datasets neither of them are well suited. MongoDB matches
all the given criteria, however the replication and consistency model are more easily tuned
in Cassandra. This is important since the distributed database needs to be configurable to
work as similarly to Fabric as possible. For this reason and since it matches all given criteria
and had a well-known consensus protocol, Paxos, Cassandra was chosen as the distributed
database.

4https: / /www.mongodb.com/what-is-mongodb

5https: / /docs.mongodb.com/v3.4/replication/

Shttps:/ /hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
7http: / /hbase.apache.org/book.html7B%5C#%7Darch.overview
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3.3 Hyperledger Fabric

This section describes the architecture of Fabric and its transaction flow. The operations of
Fabric follow a paradigm for the transaction flow called execute-order-validate paradigm.
This is a new type of transaction flow for blockchain frameworks and it consists of three
phases: the execution phase, the ordering phase and the validation phase[3].

3.3.1 Roles for Nodes

The nodes which form the network can have one of three different roles, described by An-
droulaki et al.[3]:

e Client - Clients submit transaction proposals to the endorser and broadcast the trans-
action proposal to the orderer. Clients only take part in the execution phase of the
transaction flow. Clients can be viewed as the user which interacts with Fabric.

e DPeers - Peers validate transactions from the ordering service and maintain both the state
and a copy of the ledger. All peers belong to an organization, a Fabric network can have
at most as many organizations as peers and at least one organization. Peers can also take
the special role of endorsement peer which performs the simulation of the transaction
proposal in the execution phase. The number of endorsement peers is determined by
the endorsement policy, which is set by the developer.

e Orderer - All the orderer nodes collectivity run the ordering service and uses a shared
communication channel between clients and peers. These peers only take part of the or-
dering phase of the transaction flow. The number of ordering nodes is small compared
to the number of peers.

3.3.2 Ledger

There is one copy of the ledger per channel kept locally at each peer, this is covered in the Fab-
ric documentationﬂ The ledger consists of two parts, the block store and the state database.
The first part, the block store, is a temper-resistant append-only hash chain which records all
transactiond)l The block store is the actual blockchain. Each block on the chain contains a
header and a payload of transactions. The header of the block contains the hash of the previ-
ous blocks header, cryptographically linking the blocks together in a chain, and the combined
hash value of the transaction payload[18]. The second part of the ledger is the state database
which holds the current state of the system as a set of key-value-version pairﬂ Each key
is unique, the value is the most recent value for the specific key and the version is the latest
version of the key. All the keys to ever be featured in a transaction exists in the state database.

3.3.3 Transaction Flow

The transaction flow of committing a transaction to Fabric consists of three phases. Commit-
ting a transaction can be seen as either an insert operation if new values are being written
to the system or an update operation if an existing value is updated. The flow of reading
data from the blockchain is covered in a separate section, see section Since the objec-
tive of this thesis is to compare the insert latency to Fabric and Cassandra it is important to
understand how both systems do this. The phases of the transaction flow in Fabric are the
execution phase, the ordering phase and the validation phase, and they involve all the nodes
in the network. All the steps can be seen in figure The different components involved

8h’ttp: / /hyperledger-fabric.readthedocs.io/en/release- 1.1/ledger.html
9http: / /hyperledger-fabric.readthedocs.io/en/release- 1.1/ledger.html
10htt-p: / /hyperledger-fabric.readthedocs.io/en/release- 1.1/ledger.html
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are further described after this section. The transaction flow is described in detail both in the
documentation for Fabric [[14] and by Androulaki et al. [3]], the developers of Fabric.
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Figure 3.1: The transaction commit flow of Fabric. Source: Androulaki et al.

Below is a description of all the steps in the three phases taken from Androulaki et al. [3] and
[14]. The numbers in the description corresponds to the numbers in figure[3.1} The first phase
is the execution phase, which comprises of three steps:

0 The client sends a transaction proposal to a set of endorsement peers. This proposal con-
tains the transaction id, the cryptographic identity of the client, the transaction payload,
an identifier for the chaincode and a cryptographic number called nonce. The chaincode
is the blockchain application.

1 Once an endorsement peer receives a transaction proposal it will simulate the transaction
against its own ledger and state. The endorsement peer does not update its own ledger
or state but instead produces two sets, a writeset and a readset. The writeset contains
all of the state updates in key-value pairs and the readset contains all the keys read
during simulation and their version. The two sets are encapsulated into a message
that the endorsement peer cryptographically signs before sending it back to the client.
The writeset contains the set of key-value pairs that the transaction simulation altered
and the readset contains the set of keys that were read during the simulation and their
version.

2 The messages sent from the endorsement peers to the client are called endorsements. The
client collects endorsements until it has enough to satisfy the endorsement policy. The
endorsement policy specifies how many peers that has to respond to the client before
it can move on to the next step. The client can send the transaction proposal to more
peers than the endorsement policy requires. When the client has successfully collected
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enough correct endorsements, it creates a transaction which it sends to the ordering
service.

This step is the last of the execution phase and the start of the next phase, the ordering phase.
The ordering phase contains two steps:

3 The transaction sent by the client contains the transaction payload, the chaincode operation
and its parameters, the transaction metadata and a set of the endorsements collected in
the previous phase. The ordering service places all the incoming transactions in a total
order, thereby establishing consensus on them.

4 The transactions are then bundled into blocks which are appended to each other in a hash
chain. The number of transaction in a block is decided by one of two factors; either
the number of transactions that arrive before the batch timeout or the number of
transactions that is equivalent to the batchSi z Note that the transaction might be
faulty in this step, the ordering service only establishes the order of them. The ordering
service then broadcasts the hash chain of blocks to all peers, including the endorsement
peers.

This is the last step of the ordering phase and the rest of the transaction flow is a part of the
validation phase. The validation contains one step with three smaller sub-steps.

5 All peers receive the hash chain of block from the ordering service. Each block is subject to
validation on the peer, since there might be faulty transactions on the blocks.

Evaluation The first step is to evaluate the endorsement policy. This means that all
peers make sure that each transaction has collected the correct endorsements ac-
cording to the endorsement policy. The evaluation of the endorsement policy is
done in parallel for all transaction in the same block. If the endorsement policy
is not fulfilled, the transaction is considered invalid. All the effects of an invalid
transaction are ignored but the transaction isn’t removed from the block.

Validation The next step of validation is to check if the version of the keys in the readset
for each transaction is an exact match with the version of the keys in the peers’ local
state. This is done sequentially for all transactions and if the versions don’t match
the transaction is considered invalid and the effects of the transaction is ignored.
Invalid transactions are not removed from the chain.

Commit The last step is to append the block to the peers’ local ledger and update the
state by writing all key-value pairs to the peers’ local state.

After the three phases the client will get an event from one, or several, peers that conveys
whether the transaction has been approved or notljzl This means that all three phases must
finalize before an insert or update can be considered successful.

3.3.4 Reading data

Reading data, or querying the ledger, is much simpler than adding a new transaction accord-
ing to Fabric developer Manevich™’| He explains that queries can be invoked by a client using
chaincode, which is the program code which implements the application logic [3], and that
the chaincode communicates with the peer over a secure channel. The peer in turn queries
the state database and returns the response to the chaincode. After quering the state database
the chaincode executes the chaincode logic and returns the answer to the client via the peer.

11https: / /hyperledger-fabric.readthedocs.io/en/release-1.2 / config%7B%5C_%7Dupdate.html
12h’tt’ps: / /hyperledger-fabric.readthedocs.io/en/release-1.2 / peer%7B%5C_%7Devent%7B%5C_%7Dservices.html
13Yacov Manevich, 2018-08-09, e-mail
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3.3.5 Membership Service Provider

The membership service provider (MSP) provides identities to all nodes in the system by
associating each node with a unique cryptographic identity[3]. The MSP is used to sign the
messages sent by the node to verify its identity. These authenticated messages are the only al-
lowed communication. The MSP is the component that gives Fabric its permissioned nature.
The MSP is an abstraction and can therefore be instantiated in different ways.

3.3.6 Ordering Service

The ordering service can consist of one or more nodes and it is the communication fabric[3].
The ordering service ensures that transactions are totally ordered on the blockchain. It
provides support for multiple channels, which is a feature to logically partition the state of
the blockchain[3]. The ordering service enforces the consensus mechanism of Fabric and
can be implemented in different ways, which means that Fabric has pluggable consensus.

With version 1.1.0 of Fabric two types of ordering services are provided by Hyperledger.
The first is SOLO which is a centralized ordering service, running on one node only and
mainly built for testing[14]. SOLO is not intended for production and should therefor not
be used when benchmarking. The second is an ordering service which uses Apache Kafka
and Apache Zookeeper. Kafka is a distributed, horizontally-scalable, fault-tolerant commit
log which uses the publish-subscribe patterns E The fault tolerance comes from replication
of Kafka servers on which partition of data is spread out over E} Zookeeper is a centralized
service which is used for coordinating distributed systems, which Kafka relies uporFEl The
service based on Kafka and Zookeeper is meant to be used in production[14]. Developers
can also build their own ordering service.

3.4 Apache Cassandra

This section describes the architecture of Cassandra, the consistency mechanism and the fea-
ture called lightweight transactions.

3.4.1 Architecture

Cassandra is a fully distributed system where every node in the system is identical,
meaning there is no notion of server or client. Cassandra is built to run on a peer-
to-peer network consisting of numerous nodes in several data centers [16]. Cassandra
has its own querying language, cql, which is the only way to interact with the system.

The replication factor in Cassandra refers to the number of copies of each data instance
that are stored in the Cassandra network. Cassandra has two different replication factor
strategies. SimpleStrategy allows a single integer to decide the replication factor without
taking the location of the node into account[22]. NetworkTopologyStrategy allows for speci-
fication of replication factor per data center and attempts to spread out the replicas over the
different racks.

3.4.2 Consistency Mechanism

Cassandra supports tunable consistency by the use of consistency levels. Consistency levels
can be set per operation or once for all operations. It specifies the number of replicas needed

https:/ /kafka.apache.org/intro
5https:/ /kafka.apache.org/intro
16https:/ / zookeeper.apache.org/
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to respond to the coordinator in order for an operation to be successful and for Cassandra
to update or insert a value[22]]. These levels are ranging from only requiring one replica to
respond to the coordinator to requiring all replicas to respond, see table Write operations

Table 3.3: Consistency levels of Cassandra

ALL Require all replica nodes to respond.
EACH_QUORUM | Require a quorum of all replicas in each data center to respond.
QUORUM A quorum of all replica nodes across all data centers must respond.

LOCAL_QOURUM | Require a quorum of all replicas in the same data center as the co-
ordinator to respond.

ONE At least one replica node must respond.

TWO At least two replica nodes must respond.

THREE At least three replica nodes must respond.

LOCAL_ONE At least one replica node in the same data center as the coordinator
must respond.

ANY At least one replica node must respond. If all replica nodes are

down, the write can still succeed after a so called hinted handoff
has been written.

are always sent to all replicas but the coordinator only waits for the number of responses
required by the consistency level before sending its response to the client[22].

3.4.3 Lightweight Transactions

Cassandra uses an extended version of Paxos to supports linearizable consistency for a
type of operations called lightweight transactions (LWTE These transactions are ap-
plicable to INSERT and UPDATE operations. LWT should be used whenever lineariz-
able consistency is required but is not considered to be needed for most transactions.

Paxos is a consensus algorithm which solves the problem of agreement in a distributed
system, explained by Lamport [17]. The algorithm consists of three types of actors and two
phases. The actors are the proposers, the acceptors and the learners. Original Paxos has
two phases, the prepare phase and the accept phase. In the first phase, which can be seen
in figure the first step (1) is that a proposer sends a request with a number 7 to a set of
acceptors. If an acceptor receives this request and it has not seen a request with a higher
number than # it will accept the proposal and answer the proposer with 1) a promise to
never accept any request with a number lower than # and 2) if it has seen any request with
a number smaller than n, return the proposal with the highest number. In the second phase,
which can be seen in figure[.4} the proposer waits until it receives a response from a majority
of the acceptors. If it gets enough responses, the proposer will send an accept message to all
acceptors. After the first two phases the learners, e.g. all the nodes not participating in the
first two phases, needs to learn about the accepted proposal. This can be achieved by letting
the acceptors message the learners whenever they accept a proposal according to Lamport.

In Cassandra’s modified version of Paxos any node can take the role of the proposer
and the acceptors are all the participating replicaﬂ The number of acceptors is spec-
ified by the serial consistency. If lightweight transactions is used then the consistency
level is ignored for that operation and the serial consistency is used instead. Serial con-
sistency has only two levels, LOCAL, which is equivalent to consistency level QUORUM

17https: / /www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
18h’ttps: / /www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0

18



3.4. Apache Cassandra

and SERIAL_LOCAL which is equivalent to consistency level LOCAL_QUORUM in Paxos.

Cassandra’s modified Paxos consists of four phases. The first phase is the same prepare-
phase as original Paxos, see figure but the second is a new phase, called the read phase,
see figure In this phase the proposer sends a read-request to the acceptors which reads
the value of the row which is the target and returns it to the proposeﬂ The third phase is
the accept phase of the original Paxos algorithm, see figure[3.4} The last phase of Cassandra’s
modified version of Paxos is the commit phase, see figure in which the accepted value
is committed to Cassandra storagﬂ These additions to Paxos costs two extra round-trips,
resulting in four round-trips instead of two.

prepare(n)

" response(--)

result

Proposer Acceptors

Proposer Acceptors

Figure 3.2: Prepare phase of Paxos, n is
the request number. Figure 3.3: Read phase of modified Paxos

accept(nv)

commit

F R

"'/raccepled(n)

la

Proposer Acceptors
acknowledge

Proposer Acceptors

Figure 3.4: Accept phase of Paxos, n is

the request number and v is the highest-

numbered proposal received from the Figure 3.5: Commit phase of modified
prepare phase. Paxos

It is important to note that all of the steps of Cassandra’s modified version of Paxos takes
place "under the hood". A lightweight transaction is invoked in the same manner as any other
operation in Cassandra, it is simply the syntax of the operation that differs to the application.

19https: / /www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
https:/ /www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
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3.4.4 Writing data to Cassandra

The path of writing data to persistent memory in Cassandra is four steps long. The first
step is when the client invokes an insert or update operation using cql. This data is then
written to a commit log, an append-only log on dis The same data is also written to the
memtable, which is a memory cache stored in memory@ There is one memtable per node
and table of data. When the data is written to the commit log and the memtable the client gets
confirmation that the insert or update is complete. The final destination of data is the SSTable
which are the actual datafiles on disk. The data is written to the SSTables by periodical flushes
from the memtables to the SSTabled™)

3.4.5 Reading data from Cassandra

Reading data from Cassandra is more complicated than writing. Data can reside in three
places, the memtable, the row cache, which is a special cache in Cassandra which contains a
subsection of the data in the SSTable, or the SSTable @ First the memtable in memory is con-
sulted, if the data is present in the memtable, it is read and merged with data from the SSTable.
If the data isn’t in the memtable the row cache is read, the row cache keeps the most frequentl
requested data and if the requested data of a query is present here it yields the fastest read

If the data is not in the row cache nor the memtable, Cassandra proceeds with the fol-
lowing steps to reach the correct SSTable, see figure Data in Cassandra are grouped
into partitions, and in order to find any data, Cassandra needs to find out which partition
the data belongs to. Each SSTable can contain one or more partition of data. First Cassandra
consults the bloom filter. The bloom filter is a probabilistic function that can help point
out which SSTable keeps the requested data@ Next step is to read the partition key cache,
which a small memory of configurable size which stores an updated mapping between some
partition keys and SSTablesFZl A hit in the partition key cache saves one step in the reading
flow and the search goes directly to the compression offset map. A miss in the partition key
cache means that Cassandra will search the partition summary, which stores a sampling of
all the partition keys as well as the location of these keys in the partition index. After getting
a range to search in the partition summary, the partition index in searched. The partition
index stores all the partition keys. Once the partition key is found, Cassandra proceeds to the
compression offset ma The compression offset map locates the SSTable in memory and
returns the result.

2http:/ / cassandra.apache.org/doc/latest/architecture/storage%7B%5C_%?7Dengine.html
2http:/ /cassandra.apache.org/doc/latest/architecture/storage%7B%5C_%7Dengine.html
23h’ttp: / /cassandra.apache.org/doc/latest/architecture/storage%7B%5C_%7Dengine html
24h’ttps: / /docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlAboutReads.html
25 https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlAboutReads.html
26http: / /cassandra.apache.org/doc/latest/operating /bloom%7B%5C_%7Dfilters.html
Y https:/ /docs.datastax.com/en/cassandra/3.0/ cassandra/dml/dmlAboutReads.html
Bhttps:/ /docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlAboutReads.html

20



3.5. Cloud Solutions

Read Bloom filter Partition key cache
request
Compression !
offset Ox... | Partition
e Ox... |summary
Memory
Disk
0x...
0x...
Data I
0X... Partition
0X... |.
index
A A 0X...
Return result W\/

Figure 3.6: The read flow of Cassandra. Source E}

“https:/ /docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlAboutReads.html

3.5 Cloud Solutions

Previous work in the area has successfully utilized cloud solutions to deploy Fabric and
Cassandra networks. For example in a paper by Sukhwani et al. [21] IBM Bluemix
was used to deploy Fabric and in another paper by Androulaki et al. [3] IBM Cloud
was used. In some papers the authors have chosen to build their own infrastructure
using servers for setting up virtual machines, for example in the paper by Sousa et
al. where they built their own ordering service [20]. For Cassandra Amazon EC2 has
been used in one paper by Kuhlenkamp et al.[15]. There are also examples of when
the authors built their own solution, for example the work by Cooper et al. [§]. A
commercial cloud platform was also the preferred choice as the experimental platform
in this thesis since this provides realistic performance for a wide range of use cases.

This section analyses the suitability of four major cloud solutions on the market, Ama-
zon EC2, Microsoft Azure, IBM Cloud and Google Cloud. Each cloud solution is evaluated
based on the range of out-of-the-box support for the two chosen storage techniques, Fabric
and Cassandra.

3.5.1 Amazon EC2

Amazon EC2 is Amazon’s cloud solution where users only pay for what they use, and they
have a free tier. EC2 supports both Cassandra and Hyperledger as preinstalled software.
Currently they only support running Fabric on a single instance @ This resulted in capacity
problems since the free tier only supports their smallest instance t2.micro m which has very

https:/ /docs.aws.amazon.com/blockchain-templates /latest/developerguide/blockchain-templates-
hyperledger.html
30https: //aws.amazon.com/ free/
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limited capacity with 1 GiB RAM memory and 1 vCPU @ . The low capacity could only
support very small Fabric networks of less than 10 nodes using Docker.

3.5.2 Microsoft Azure

Azure is Microsoft’s cloud solution where users only pay for what they use, and they have
a free tier [ﬂ Azure supports deploying Fabric as a multi-node network through the Azure
portal. In the multi-node network all nodes, including one node running the MSP and one
node running the ordering service, are deployed on separate virtual machines*°| However,
currently Azure only supports up to 9 peerﬁ which is too small for the purpose of this
thesis. Azure’s free tier is not limited to one instance but the free credit can be used to buy
the instances needed %

3.5.3 IBM Cloud

IBM Cloud is IBM’s cloud solution which supports a range of servicesﬁ One of their services
is IBM Blockchain in which it is possible to deploy a distributed Hyperledger Fabric network

but Cassandra is not supported as a plug-and-play type of service

3.54 Google Cloud

Google cloud supports Cassandra but not Fabric in their marketplace.

3.5.5 Choice of Cloud Solution

None of the cloud services” out-of-the-box solutions could be used in this thesis to run the
systems distributed over several nodes. The networks could have been deployed by man-
ually configuring the systems with one node per virtual machine on any one of the cloud
services. But the platform that were chosen for this work was to run the experiments with
all the nodes co-located on a single instance. This is not the preferred choice since it might
have a negative impact on the result but it was the platform most suited for the budget of this
thesis. Microsoft Azure and Amazon EC2 both offer Linux machines of varying sizes and
specifications but Azure was chosen because of their free tier. The specifications of the virtual
machine used in the tests can be seen in table Both frameworks are setup using Docker
with one node per container and all tests are run in the Docker-environment.

Table 3.4: Specification of machine running the tests

Azure instance D4s_v3
Processor (CPU) 4 vCPUs
System memory (RAM) 16 GB
Storage 32 GB Managed Premium SSD disk
Operating system Ubuntu Server 18.04 LTS
Azure region West US

31 https://aws.amazon.com/ec2/instance-types/

32h’ttps: / /azure.microsoft.com/en-us/free/

FBhttps:/ /azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft-azure-blockchain.azure-
blockchain-hyperledger-fabric?tab=Overview

34https:/ /techcommunity.microsoft.com/gxcuf89792/attachments/ gxcuf89792/ AzureBlockchain/221/1/

35https: / /azure.microsoft.com/en-us/free/

3(’h’ttps: / /www.ibm.com/blockchain

37https: //www.ibm.com/cloud/
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Experiment Design

This chapter describes the design and methodology of the experiments conducted in this
thesis. Section covers the configurations of the frameworks. Section describes the
application and test scripts used. Section 4.3 motivates the choice of evaluation metrics and
section (4.4|describes the experiments.

4.1 Configuration of Chosen Frameworks

This section describes how both Fabric and Cassandra are configured in the experiments.

4.1.1 Hyperledger Fabric

All experiments use version 1.1.0 of Hyperledger Fabric, since the latest (v1.2.0) was
released during the writing of this thesis ﬂ Each organization has one peer, one CA
client and one MSP, meaning that in a network of N peers, there are N organizations.
All organizations were connected using a single channel. The policy for endorsement
of transactions was a quorum of organization, in order to mimic the consistency level
of Cassandra. The chaincode used for the experiments is written in Golang and it is
a key-value store with functions for querying the ledger and committing transactions.

As discussed in chapter 2| there are two different ordering services which comes with Fabric
in version 1.1.0, SOLO and a Kafka-based ordering service. SOLO is only meant for testing
and not built for a production environment, for this reason it was not used in this thesis.
The ordering service is pluggable and it is possible to build one, for example Sousa et al.
[20] present a Byzantine fault-tolerant ordering service for Fabric. The ordering service used
in all experiments in this thesis is the Kafka-based ordering service. This ordering service
consists of a variable number of Kafka servers and Zookeeper nodes. There needs to be an
odd number of Zookeeper nodes to avoid split-head-decisions. Four Kafka servers is the
recommended minimum in order to have fault tolerance. In this work four Kafka servers
were used together with three Zookeeper nodes. Unless otherwise stated the batchSize is
set to 1 message and the batch timeout to 1 second.

Thttps:/ / github.com/hyperledger/ fabric
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4.2. Application

4.1.2 Cassandra

All experiments in this thesis use Cassandra version 3.11 and cql version 3.4.4. Cassandra
has a tunable replication factor and in this thesis Cassandra was configured to use N as repli-
cation factor, where N is the number of nodes. This is the maximum number of replicas and
is it not always the best choice. However Fabric always uses one replica per peer and setting
the replication factor to N configures Cassandra to resemble Fabric as much as possible. Cas-
sandra consumes a lot of RAM, so each node was restricted to only 64 MB of RAM in order
to be able to run larger Cassandra networks on a single virtual machine. For all experiments
LWT was used in order to utilize the Paxos consensus protocol. The serial consistency was
set to SERIAL, which means that (N/2 + 1) of the replicas must respond to each proposal.
The choice of serial consistency level is only between SERIAL and LOCAL_SERIAL, which
both are the same if the Cassandra nodes are all in the same data center, or machine as in
this thesis. The serial consistency is used for all LWT operations and overrides the ordinary
consistency level.

4.2 Application

The application used for the experiments is a key-value store. The test scripts are written
in bash by the author of this thesis. The key-value pairs stored consists of the key which is
a string and the value which is an integer. There are only two operations available in the
application:

e insert (key, value) -inserts a new key-value pair to storage
e read (key) -reads a value given a key from storage

The insert operation starts a new transaction flow in Fabric and when executed the key-value
pair resides in the ledger of each peer. The insert operation in Cassandra uses LWT and
when executed the key-value pair resides in all replicas e.g. all nodes of Cassandra given the
replication factor chosen. The read operation in Fabric reads a value from the ledger and the
read operation in Cassandra follows the read flow described in chapter 2] If the application
tries to read a key which isn’t in storage an error will be returned, however the experi-
ments are designed so that this never happens since these operations have higher latency.

In figure it can be seen how the tests work on a component-level for Cassandra. The
application, written in bash, uses the docker exec command to access one Cassandra
node. Note that the application has to go through Docker and that each node runs in their
own container on Docker. The docker exec takes the cql-command as an argument. The
cqgl-command is either an INSERT for inserting or SELECT for reading.

Node 2 Node N

Application Docker

Docker exec

Host Operating System

Figure 4.1: Overview of the test setup of Cassandra
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In figure 4.2|it can be seen how tests for Fabric work on a component-level. The figure has
been simplified in the way that the box called Fabric represents all the the sub-components
of Fabric, a more detailed picture of Fabric can be seen in chapter 2] figure Each node,
e.g. both the peers and ordering service nodes, run within their own container on Docker.
The tests are different from Cassandra in the way that the application, written in bash, can
directly access the chaincode installed on the peers. The application invokes the chaincode
on all endorsing peers, illustrated in figure4.2|as peer 1 and peer 2.

Chaincode chancode Chaincode Fabric

Peer 1 Peer 2 Peer N

Application Docker

Host Operating System

Figure 4.2: Overview of the test setup of Fabric

4.3 Evaluation Metrics

This section covers the choice of the evaluation metrics and how they are measured in the
experiments.

4.3.1 Choice of Latency Metrics

The latency of a distributed system can be both measured and defined in different ways.
Wada et al. [23] measure the eventual consistency of NoSQL databases from a con-
sumer’s perspective. The eventual consistency is measured in two ways, 1), as the time
it takes for a client to read fresh data after an insert and 2), as the probability of read-
ing fresh data as a function of the elapsed time since the insert. This estimates how
long time the client is expected to have to wait for fresh data. The expected wait-
ing time can be interpreted as the latency, but it is not a common way of measuring it.

The latency could also be measured as the time it takes for the client to send a request
to the system or the time it takes for a system to answer the client. These two ways
are both problematic in distributed systems since all nodes use different clocks. With
different clocks there is always a risk of clock skew, which is hard to estimate and there-
fore any metric which relies on the time of two different clocks is unreliable[9]. The
problem with clock skew is avoided when measuring the latency as the round trip time.

The performance metrics considered in this thesis are the insert latency as the round trip
time and read latency as the round trip time.

4.3.2 How Latency as Round Trip Time is Measured

In this thesis two instances of latency are measured. The first is the insert latency as the round
trip time, Tjs0,+. The second is the read latency as the round trip time, T;,,;. Neither of these
can be measured directly, instead Tj, and T}, are measured. Tj, is the insert latency plus the
overhead and T, is the read latency plus the overhead. Since the experiments are performed
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4.4. Description of Experiments

using Docker, it is the overhead of Docker that is of interest. Tj, and T}, are measured from
inside the application e.g. at the start of the arrow in figure {4.1|and T, and T;, can be
modeled as in equation and The variable Tj/peqq is measured in experiment 1, which
is described further in section 4.4l

Ti = Linsert + Toverhead (4~1)

T = Treud + Toverhead (4~2)

The work done when receiving an insert request before sending confirmation to the client,
Tinsert, is different on Cassandra and Fabric. When using LWT in Cassandra, the modified
Paxos with four phases needs to finalize before sending confirmation. This means that the
value is committed to a number of nodes, how many depends on the consistency level, when
the insert operation is finalized. For Fabric all three phases of the transaction flow make up
the insert operation, meaning that the value is committed to all peers. The experiments below
explains how this thesis measures T;,, Ty, and Tyyerpeqq in order to find Thepy and Tiygep-

4.4 Description of Experiments

There are five experiments in this thesis, each with a different goal as follows:
1. Estimating the latency overhead caused by Docker

Insert latency as a function of network size

Read latency as a function of network size

Insert latency as a function of increasing load

AR R R

Latency for different mixes of insert and read operations

This section describes the experiments conducted. Each experiment was con-
ducted on both Fabric and Cassandra, configured according to section [.1.1]
and respectively. All experiments consisted of 50 individual measure-
ment and each experiment were conducted twice and the networks were brought
down between runs. This resulted in 100 measurements for each experiment.

Experiment 1, 2 and 3 uses 6 different network sizes; 2, 4, 8, 12, 16, 20 logical nodes or
logical peers. Henceforth in this report the logical nodes and logical peers will be called
nodes or peer, even though they are not different physical nodes or peers. The decision for
these specific network sizes is both based on related work in the area and on limitations
imposed by co-locating all nodes on one machine. For example Cooper et al. presents YCSB
and in their benchmarking they used 2, 4, 6, 8, 10 and 12 nodes[§]. Dinh et al. presents the
benchmarking tool Blockbench for permissioned blockchain and they use networks of sizes;
1,2,4,8,12,16, 20, 24, 28, 32 nodes for their experiments[10]. Abramova et al. measures the
scalability of Cassandra with YCSB, and they use 1, 3 and 6 nodes for the experiments|2].
Androulaki et al. presents the architecture of Hyperledger Fabric for their experiments they
use up to 110 peers [3]. Since Cassandra requires a lot of RAM and the experiments are
conducted on the same machine, only 20 nodes could be run at the same time.

4.4.1 Experiment 1 - Estimating the Latency Overhead Caused by Docker

The overhead of the network, T,,emeqs Needs to be estimated. Since the experiments
are performed using Docker, it is the overhead of Docker that is of interest. Since all
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4.4. Description of Experiments

nodes are co-located in the same machine the overhead of the network, Tyyerpeqd, is sup-
posedly small in comparison to the overall time consumption of operations, T, and Tj,.

In Fabric it is possible to take timestamps in the chaincode and derive the overhead imposed
by Docker. The tests were repeated 50 times for each network size. The timestamps in the
chaincode were subtracted from the one in the test script to get an estimation of the overhead.

As can be seen in figure 4.1| the only way to execute a cql-command, for example an INSERT
or SELECT statement, is to go through Docker. There are two ways to execute cql-commands.
The first way is by connecting to the cql shell for an interactive session. The second way,
which is used in this thesis, is to use the docker exec command to run a script or command
from inside the Docker container. The docker exec command connects to the specified
node and opens the cql shell, in which it runs a script or command if specified. It isn't
possible to take timestamps or use any type of control structure in the querying language
cql. For this reason the test scripts are written in bash and the docker exec command is
used to run cql-scripts on Cassandra, an overview can be seen in figure This means that
there is a significant overhead from connecting to the Docker container which needs to be
measured and subtracted from the timestamps recorded in the bash file. The test to measure
the overhead consisted of measuring the time of executing an empty cql-script using the
docker exec command from a bash-script, see figure The test was repeated 50 times
for each network size.

Node N Node N

Start timer|

Application Docker Run cgl-script Application Docker Run empty script

Stop timer| I Stop timer| I
, ’ ,

Figure 4.3: Schematic overview of experi- Figure 4.4: Schematic overview of experi-
ment 2-5 ment 1

4.4.2 Experiment 2 - Insert Latency as a Function of Network Size

The purpose of this experiment is to identify how the insert latency, Tj,q.¢ is affected by
the size of the system. This is achieved by measuring T;, and subtracting T,yepeqq, found
in experiment 1. To measure the time, Tj,, of the insert operation a timestamp was created
when the operation was initialized and another timestamp when the operation finalized. The
difference between these timestamps was recorded. The experiments consisted of inserting
50 new objects in the blockchain, or in the database. These operations were made with 10
second intervals. Since the preliminary tests showed latencies over 3 seconds 10 seconds was
considered sufficiently large to avoid interference between consecutive operations.

4.4.3 Experiment 3 - Read Latency as a Function of Network Size

The purpose of this experiment is to identify the read latency, T,.,s and how it is affected
by the size of the system. This is achieved by measuring T}, and subtracting Ty erpeqq, found
in experiment 1. Since both systems use N replicas in a system of N nodes or peer, ideally
the time consumption should not be heavily affected by an increase of network size. To
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4.4. Description of Experiments

Table 4.1: Workloads for experiment 5

Name Percentage of read operations | Percentage of insert operations
Read-intense workload 95% 5%
Balanced workload 50% 50%
Insert-intense workload 5% 95%

measure the time of a read operation, T,, a timestamp was created when the read command
was issued and another timestamp when the read operation finalized, the difference between
these timestamps was recorded. The experiments consisted of making 50 consecutive reads
from one node or peer in the network and record the time. The reads were conducted once
every 10 seconds for the same reason as state in previous section. This was repeated for all
nodes or peers in the system.

4.44 Experiment 4 - Insert Latency as a Function of Load

The purpose of this experiment is to measure the effect on insert latency when the system
size is constant but the load varies. The network in these tests has constant size 20 nodes
or peers. The experiment consists of making 1, 5, 10, 15 and 20 concurrent insert operations
to the system, repeating each burst of inserts 50 times. Each insert operation is executed on
its own thread. The latency, T;, was recorded and T,;,/,eqq subtracted. This experiment was
repeated twice, resulting in 100, 500, 1 000, 1 500 and 2 000 reads respectively. To estimate
the overhead of Docker when using Cassandra the same experiment was carried out but
with empty cql-scripts. The overhead of Docker is expected to differ for this test since multi-
ple containers will be accessed at the same time, which is the reason for repeating this test.

For Fabric the ordering service is configured differently for this experiment compared to
the others. The batchSize is set to 10 messages and the batch timeout to 2 second,
which are the recommended values. The reason for the different setup in the different exper-
iments is that for the other experiment only one transaction will be submitted at the time.
This makes setting the batchSize to 1 message the most favorable for the ordering service.
However, for this experiment 10 messages are the median number of concurrent transactions
and setting the batchSize to 10 messages will show how much this parameter affects the
overall latency.

4.4.5 Experiment 5 - Latency for Different Mixes of Insert and Read Operations

The purpose of this experiment is to see how both of the system performs under different
mixes of insert and read operations, called workloads. Three different workloads were used
in this test, which can be seen in table The network in these tests has constant size 20
nodes or peers. All workloads consisted of 100 operations of the least frequently performed
operation and were repeated twice. For example in the first row of table [£.T|the read-intense
workload is specified, it is made up of 95% read operations and 5% insert operations. For the
read-intense workload 100 insert operations were performed and 1900 read operation.
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Results

This chapter describes the results of the experiments presented in chapter @ Overall, Cas-
sandra has lower latencies when inserting values and Fabric has lower latencies when
reading. Both scale well but the latency of Cassandra is more affected by an increase
in load. The result is not discussed and analyzed in this chapter, this is done in chapter [6|

In several cases, the results in this chapter are presented using box plots, in which the
vertical lines represent the minimum and maximum values. The bottom of the box repre-
sents the 25th percentile, the line in the box represents the median and the top of the box
represents the 75th percentile.

5.1 Estimating the Latency Overhead Caused by Docker

The overhead, called T,yepeqq, Of using the docker exec command to run cql-scripts on
Cassandra can be found in graph[5.1} As can be seen there is a significant overhead imposed
by Docker on Cassandra, from 500 ms for smaller network to almost 800 ms for 20 nodes. The
overhead of Docker when using Fabric, called Tj,1044, can also be seen in figure and it
is around 20 ms for all network sizes. The overhead is relatively small in comparison to the
insert latency, see section[5.2]but rather large compared to the read latency, see section
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5.2. Insert Latency as a Function of Network Size
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Figure 5.1: The overhead caused by network and system software when using Cassandra and
Fabric respectively

The lowest overhead found in both experiments is presented in table This overhead is
subtracted from the latency found in the other four experiments when presenting the data in
this chapter. This way we provide a conservative estimate of the latency caused by the Fabric
and Cassandra components. The actual latency of the other experiments could therefore be
lower than what is shown in the graphs for experiment 2-5. In theory the highest or median
overhead could have been used instead to give the two frameworks the most favorable out-
come. However in practice many of the measurement use the lowest overhead and using the
median or higher overhead yielded negative measurement. These negative measurements
could perhaps have been trimmed but that would have resulted in fewer data point as well
as the removal of the most favorable data points. The result could also have been divided
into "buckets" and different overhead values could have been applied to each bucket, but the
fairness and correctness of this approach can not be guaranteed. For these reasons the choice
was made to use the lowest overhead.

Table 5.1: Lowest overhead found

Framework | 2 nodes | 4 nodes | 8 nodes | 12 nodes | 16 nodes | 20 nodes
Cassandra 400ms | 400ms | 420ms 460 ms 465 ms 520 ms
Fabric 156ms | 155ms | 15,5ms | 16,3 ms 16,5 ms 17,2 ms

The reason for the large differences between Fabric and Cassandra is discussed in chapter [6]

section[6.1.7]

5.2 Insert Latency as a Function of Network Size

The effect of network size on the insert latency for Cassandra and Fabric can be seen in figure
There are some differences worth pointing out. Cassandra has approximately the same
latency as Fabric for smaller networks but is faster for larger networks. Cassandra scales
very well with only small increases in latency for larger networks. Fabric is a bit worse but
still achieves good scalability for networks of this size. Cassandra has a median latency of
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5.3. Read Latency as a Function of Network Size

around 180-240 ms for 2, 4 and 8 nodes and a median latency of 250-280 ms for 12, 16 and 20
nodes. The majority of the measurement data is in a tight range but there are some outliers
with significantly higher latency for Cassandra. Fabric has a median latency of 140-160 ms
for 2 and 4 peers, 220-270 ms for 8 and 12 peers and 340-420 ms for 16 and 20 peers. Just like
Cassandra the data points for the 25th to the 75th percentile are in a close range but there are
some outliers with significantly higher latency.
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Figure 5.2: The insert latency

5.3 Read Latency as a Function of Network Size

How the read latency is affected by the network size can be seen in figure [5.3|for both Fabric
and Cassandra. The results are very similar in terms of scalability, there is very little increase
in latency of larger clusters. Fabric has much lower latency than Cassandra. The read latency
in Cassandra is similar to the insert latency with 150-180 ms as the median latency with 2
and 4 nodes, 220-250 for 8 and 12 nodes and 230-270 for 16 to 20 nodes. The data points are
more scattered for reading than inserting for Cassandra. In Fabric the median read latency
is around 30 ms for smaller networks of 2, 4 and 8 peers and between 35-40 ms for larger
networks of 12, 16 and 20 nodes. All the data points for Fabric are in a close range. There was
no difference in read latency between which node or peer the data was read from, as expected
with the given replication factor.
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5.4. Insert Latency as a Function of Load
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Figure 5.3: The read latency of Cassandra and Fabric

5.4 Insert Latency as a Function of Load

This experiment investigates how the insert latency is affected by the load on the system.
The result for Fabric and Cassandra can both be seen in figure Surprisingly the latency
of Cassandra is now much higher than the latency found in experiment 2. The latency of
Cassandra is also higher than the latency of Fabric for higher loads, which also is different
from experiment 2. What this figure doesn’t tell is that the overhead for Docker is larger for
this experiment than the overhead found in experiment 1. The overhead of Docker for this
experiment can be seen in figure Now it is clear that Cassandra has a better scale up,
but the latency for higher throughput is almost the same for both systems. For loads of 15
and 20 writes per second Cassandra sometimes fails to receive confirmation from a sufficient
number of acceptors, which leads to timeouts.
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Figure 5.4: The insert latency of Fabric and Cassandra under increasing load
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Figure 5.5: Insert latency of Cassandra and overhead of Docker under increasing load

The results for Fabric is interesting since the latency drops significantly between 5 and 10
inserts per second. This behavior can be seen even more clearly in figure [5.6| which contains
more data points. In this figure it is clear that at 10 writes and 20 writes per second the latency
drops suddenly, and then increase again. This behavior is discussed in chapter [6}
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Figure 5.6: The insert latency of Fabric under increasing load - extended

5.5 Latency for Different Mixes of Insert and Read Operations

In this section the result from the experiments on different workloads is presented. The work-
loads are repeated again in table[5.2}

Table 5.2: Workloads for experiment 5

Name Percentage of read operations | Percentage of insert operations
Read-intense workload 95% 5%
Balanced workload 50% 50%
Insert-intense workload 3 5% 95%

For Cassandra there are only small differences between the workloads. The insert latency
decreases with more write-intense workloads, see figure The read latency is almost
not affected at all, see figure even the outliers have almost the same maximum value.

For Fabric the largest difference is between the read-intense workload and other two work-
loads, see figure[5.7jand[5.8] Between the insert-intense workload and the balanced workload
there are almost no differences neither in insert latency nor read latency. The insert-intense
workload and the balanced workload has lower insert latency than the read-intense work-
load and smaller variance as well. For read latency all workloads have the same median
latency. For the read-intense workload, with the highest percentage of read operations, there
are more data points above the median for both read and insert latency.
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Figure 5.7: The insert latency of different workloads
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Figure 5.8: The read latency of Cassandra and Fabric of different workloads
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Discussion

This chapter is divided into three parts, the first, found in section discusses the result
presented in chapter[5} The second part can be found in section [6.2] where the methodology
will be discussed, more specifically how the choice of experimental platform can impact the
results, and the difference in the maturity of both systems. Section [6.3|goes on to discuss the
work in a wider context, what the benefits of blockchain technology can be and what the risks
are.

6.1 Results

In the following sections the results of the experiments, presented in chapter|5} are discussed.

6.1.1 Estimating the Latency Overhead Caused by Docker

The overhead of Docker is large for Cassandra because the commands have to be issued from
inside the container. This means that the command docker exec has to be used to start a
cqlsh shell and as shown in experiment 1, this has a large overhead. This is not a fundamental
feature of Cassandra but rather a result of the choice of implementation in this thesis. For
Fabric the overhead is very small compared to the insert latency but very large compared to
the read latency. Even though Fabric also uses Docker it is structured differently and issuing
operations on the blockchain doesn’t require docker exec to start any new shells. Since
Fabric is built to run inside of Docker it is optimized to utilize Docker in a more effective way.
Because of this the overhead is smaller for Fabric.

6.1.2 Insert Latency as a Function of Network Size

The insert latency Cassandra found in this work is higher than the one found in related
work, a big reason for this is that this thesis uses Lightweight transactions (LWT). LWT
is more time-consuming than the standard insert and update operations since it uses
Paxos with 4 round trips and involves a quorum of nodes, read more in chapter [2} sec-
tion The reason for using LWT is to try to make the two system work as simi-
larly as possible and Fabric always uses an ordering service to enforce ordering. Using
LWT and Paxos is also the reason for why the insert latency of Cassandra scales the
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6.1. Results

way it does. Paxos uses serial consistency of a quorum of nodes, which means that
with a larger network more nodes have to reply in order to see the insert as successful.
The scalability of LWT is good since the increase of latency is small for larger networks.

The insert latency for Fabric is on average 20% lower than the insert latency of Cassan-
dra for up to 12 nodes. For 16 and 20 nodes Cassandra has the lower latency. Fabric
performs well in terms of scalability but not as well as Cassandra. In this experiment
Fabric uses a quorum of peers in the first step of the transaction flow, which means that
for larger network the execution step is performed by more peers. This is the main rea-
son why the insert latency of Fabric scales the way it does. When the size of the network
grow the ordering service also has to communicate with more peers in the ordering step.
Another contributing factor is that the validation step is performed by all peers in paral-
lel and when only using one machine the work isn’t spread out across multiple machines.

Androulaki et al. [3] found higher insert latency in their benchmarking of Fabric, on av-
erage the latency in their work was 542 ms. Most likely this discrepancy comes from the
different setting of the ordering service, as seen in chapter |5 different setting can greatly
effect the latency. The difference can also come from the fact that this thesis uses one machine
for the entire network which means that the network cost of inter-peer communication is
much smaller than if all peers are located on different machines. Androulaki et al. use
more dedicated virtual machines and run the peers on separate machines, but they also
use more CPU-power. The endorsement policy is not specified either which may lead to
different conclusions. Since the transaction flow of Fabric includes a simulation of the chain-
code function used, it can be hard to compare results with different chaincode applications.

Kuhlenkamp et al. [15] compare scalability and elasticity of Cassandra and Hbase. One
of their workloads was write intense and the result was the latency of performing write
operations. The average write latency for the 4 node cluster is approximately 20 ms, and
decreases to 10 — 15 ms for the 8 and 12 node clusters. The numbers are lower than those
found in this thesis, only their reported 90th percentile has around the same latency as in
this work. One reason for the gap is probably how the experiments are set up, this thesis
puts all the nodes on the same machine which will lead to bottlenecks such as CPU-time.
Another is that this thesis uses the LWT instead of the standard inserts, LWT is a lot more
time-consuming because it establishes linear consistency.

6.1.3 Read Latency as a Function of Network Size

When it comes to reading data, Fabric performs much better than Cassandra. According to
previous research, presented in the section[2.5, Cassandra can be tuned for lower latency than
the one found in this work. However, since the setup in these papers are different they can
not be directly compared to the results in this work. In Fabric it is relatively quick to read a
value since all peers always have the same copy of the world state and only the state database
is consulted. This can also be seen in how the outliers are not so far from the other data points.

In Cassandra the read latency is sacrificed for quicker writes. As explained in
chapter [2| data can be found in different places yielding different latencies in Cas-
sandra.  This is clear in figure Both the data points in the 25th to 75th
percentile are scattered more compared to the insert latency, which are all in a
much closer range. The outliers are also further away from the other data points.

As expected with the given replication factor of one copy per node or peer, both sys-
tems had good scalability with only minor increases in latency for larger networks.
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A for Cassandra Cooper et al. [8] measure the latency of a workload which only con-
sists of read operations, when increasing the number of nodes. They have only used clusters
up to 12 nodes but the increase of latency is similar to the one found in this thesis. However,
the latency is much lower in their work than in this thesis. They disabled all replication and
did not use LWT, which is probably what caused the biggest difference. Another reason for
this is that they used six machines, instead of one, and allocated 3GB of heap instead of the
65MB. Kuhlenkamp et al. [15] also measure the latency of a read intense workload and the
result was the latency of performing read operations. The average found was 35 ms for the
4 node cluster, and lower latencies of 25 — 30 m for the 8 and 12 node clusters. The numbers
are lower compared to those found in this thesis, their 95th percentile matches the median of
this work. Kuhlenkamp et al. didn’t use LWT either and they did not use co-location of the
nodes, which most likely are the reason for the difference.

6.1.4 Insert Latency as a Function of Load

In this experiment the results for Fabric were surprising because of the drop in latency
for 10 writes per second. There could be seen a similar, but smaller, drop at 20 writes
per second. This is because of how the ordering service of Fabric works in the order-
ing phase of the transaction flow. If several transactions arrive in within a small enough
time interval, called batch timeout, they are clustered together in the same block. Un-
less the block is full, e.g. the batchSize is reached, then the block is sent to the peers
immediately and the next transactions have to "wait" until the ordering service creates
the next block. This goes the other way around too, if the batchSize isn’t reached the
ordering service will wait for the batch timeout. For this application one block can
hold 10 transactions, but this is specific for this application and both the batchSize and
batch timeout can be adjusted per channel. Adjusting the batchSize and batch
timeout is what causes the difference in latency between experiment 2 and this ex-
periment, this was done intentional to better optimize the latency for each test scenario.

Recall that the batch timeout was set to 2 seconds in this experiment and the batchSize
to 10 transactions.This explains the latency drops at 10 inserts per second. For all the other
loads before the ordering service waits for the batch timeout before sending the block.
The fact that the 90th percentile is a lot higher for loads of 10 inserts per second and higher
can also be explained by this. The 90th percentile is the latency of the transactions that had
to wait for the ordering service because the first 10 transactions filled up the batchsize.
For 20 inserts per second all transactions fit into 2 blocks exactly and the 90th percentile
is therefore low for only this load variation. The linear increase of the median latency is
the increase of the execution and validation steps in the transaction flow, which is expected.

Dinh et al.[10] evaluated three different private blockchains, including Fabric. One of
the metrics evaluated is scalability as changes in throughput and latency. Interestingly
they found that Fabric did not scale beyond 16 nodes. As for latency, their findings
are similar to those of this thesis. For loads under 200 requests per second the la-
tency started at 1 seconds to increase only a little with more peers. For higher loads
the latency increased to over 10 seconds. This thesis does not research loads of the
same magnitude but the rate of increases are similar to the one found in the paper.

For Cassandra, it is clear that Docker has a big effect on this experiment. However when
the overhead of Docker is removed, the results found in this experiment are similar to the
result found in related work by Cooper et al.[8]. In both this work and in the work by Cooper
et al. the trend is that the insert latency increases significantly when the throughput was
increased . However, the exact latency are not similar, this work found higher latencies
that Cooper et al. When it comes to exact measurements and not trends it it important
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to note that their work does not use LWT and should therefore not be compared directly.

There are problems with running each insert on its own thread on a single machine with
only 4 vCPUs. It is hard to separate the overhead of thread switching from actual increase in
latency from increased throughput.

6.1.5 Latency for Different Mixes of Insert and Read Operations

For Fabric the largest difference of the insert and read latency could be seen for the read-
intense workload 1 compared to the others. For workload 1 there was a large variance in
the result for both metrics. The implication of this is that more reads to the system leads
to higher latencies. This also implies that the bottleneck of the transaction flow are the
peers since this is the only overlap between the transaction flow and the read flow. This
result is the consequence of the co-locating of peers in one machine. The execution and
validation phases involves a quorum of and all peers restrictively and the work of these
phases are done in parallel on the involved peers. If the peers were spread out on different
machines, then the workload could be spread out too which would reduce latency in this
case. With hindsight, the decision to run all peers on one machine was not a good decision.

In Cassandra a small improvement in latency could be seen with more write-intense work-
loads. This was expected since Cassandra is more tuned for reads. For the read latency in
Cassandra, no real difference could be seen, which is also expected given the architecture of
Cassandra.

6.1.6 Overview of Test Results

In comparison to each other it is clear that Fabric is providing much shorter laten-
cies for reading than Cassandra. The read latency of both systems are not affected
by neither size of the network nor the mix of read and insert operation performed on
the system. This makes Fabric the clear winner in the read latency category. Given
the architecture of both systems this was expected but, after these experiments it is
clear just how much better Fabric performs compared to Cassandra. It is also impor-
tant to note here that the transaction flow of Fabric includes the execution phase in
which each transaction proposal gathers endorsements to be eligible to change the state
of the system. Cassandra does not include a similar step, which means that the Ia-
tency of Cassandra would be even higher if both systems included the same steps.

For inserting, the insert latency of Cassandra scales better with the size of the network
than the insert latency of Fabric. This gives us a hint that for larger systems, Cassandra will
outperform Fabric and provide lower insert latencies. However, for the small systems that are
the topic of this thesis both systems have almost the same latency. Additionally, with a higher
throughput Fabric can outperform Cassandra if the ordering service is configured correctly.

When it comes to overhead of using Docker, as expected it is clear that Fabric is better
optimized than Cassandra. The fairness of choosing to use Docker for both systems can be
discussed.

6.2 Method

This section covers two aspects of the method. Firstly the choice of frameworks and maturity
of Cassandra and Fabric is discussed. Secondly the experiment design and choice of method
is covered.
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6.2.1 Choice of Frameworks

For this thesis it would have been interesting to compare several frameworks of both tech-
nique to get a better understanding of the current state of permissioned blockchains and
distributed databases. However, only one framework of each technique was chosen. When
it comes to permissioned blockchain there aren’t a lot of options available on the mar-
ket. Developing an application with Fabric was cumbersome and challenging since it is a
brand new framework, but compared to the other available options it was still the most
mature choice. For distributed databases there were more options available and gener-
ally the different frameworks are more mature. In related work comparing Cassandra to
other databases, such as Cooper et al. [8] and Abramova et al. [1], in workloads similar
to the ones of this thesis Cassandra performs better or equivalent to its competitors. For
these reasons, Cassandra was a good choice as a representative for distributed databases.

Fabric is still a very new framework, it is currently on version 1.2.0, with the first ver-
sion, v.0.6.1, released in October 2016. Cassandra on the other hand was first released
in 2009. Since the developers of Cassandra has had a longer time to fix performance
issues in the code, one might ask if it is fair to compare the performance of Fabric
and Cassandra and then draw conclusions regarding the performance of blockchain-
based systems in general. This is a fair argument and perhaps this work should have
been done later in time to give Fabric more time to catch up performance wise. This
is the stand-point of the developers of Fabric, which they state in the paper by An-
droulaki et al. from 2018 [3]. However at the time this thesis work started Fabric
was the best choice as a representative of the permissioned blockchain frameworks.

The CAP-theorem, originally coined by Eric Brewer in 2000 [4], states that is is not pos-
sible for a distributed system which shares data, to have consistency (C), availability (A)
and partition tolerance (P) simultaneously. All three aspects are desirable, and users of
distributed system have come to expect all of them. The CAP-theorem provides a way
of categorizing distributed systems into CA, AP and CP systems. Cassandra is typically
classified as an AP-system but with our chosen replication factor and by using QUORUM,
a high consistency level, it is more tuned to be a CP-system. Although the classic definition
of the CAP-theorem does not declare any connection to latency, they are still connected [5].
It may be unfair towards Cassandra to enforce the chosen replication factor. Preferably this
work should have included a configuration section where multiple replication factors were
tested. This way the most favorable replication factor could have been chosen for this thesis.

Using LWT instead of regular insert operations is not recommended for Cassandra since
the modified Paxos used is time-consuming. Not using LWT would have shown better
performance for Cassandra. However, using Paxos makes the process of inserting values
more like the transaction flow of Fabric, since it includes an ordering step, which makes the
comparison fairer. The chosen method illustrates that using distributed databases as a P2P
system has penalties for linearizing consistency and this highlight the need for blockchains.

Overall the goal was to make the two systems behave as similar to each other as possi-
ble. The idea is that this will yield the most comparable and fair result. However, another
possible approach to this is to tune both framework to meet their most optimal settings. For
this report that would mean some changes for Cassandra but not too many for Fabric. This
decision come down to what is considered most fair.

40



6.3. The Work in a Wider Context

6.2.2 Experiment Design

The choice of co-locating all the nodes in one single virtual machine has most likely af-
fected the results negatively. Co-locating means that all the resources are shared which
could lead to bottlenecks, for example the CPU or the RAM. Therefore, it would have
been preferable to use one node per machine, which is also the real-world scenario of
distributed systems. Co-locating could have affected the validity of this thesis, especially
since related work in the area have almost always used one node per machine. Abramova
et al. [1] evaluate Cassandra and MongoDB by running them on the same machine and
for this very reason they chose not to measure latency. However, the machine used in
this thesis had 16 GB of RAM and 4 vCPUs and neither worked with full utilization dur-
ing any test. The use of Docker is also a good infrastructure since it simulates a network
between the containers, which helps to cancel out the effect of co-locating to some extent.

Using relatively small networks of up to 20 nodes/peers is a direct consequence of us-
ing only one machine. This is small compared to actual network used in the real world.
However, as discussed in chapter @] many papers benchmarking both distributed databases
and blockchains use networks of similar size. Extending the experiments to include more
peers for Fabric would have been relatively simple. This is because Fabric doesn’t require
as much RAM as Cassandra and which means that larger Fabric network could be run on
the same machine. The test-script are also extensible. Extending the experiments to include
more nodes for Cassandra would require another machine but the test-scripts are extensi-
ble, meaning that it would not have required a large amount of work. However, spending
time on deploying the frameworks on a fully distributed system is a better investment
since this would increase the validity of the work more than adding more nodes or peers.

The documentation for Fabric is still in its early stages and a lot of knowledge only con-
sists in the Fabric community. I've been in contact with people there, most importantly
two of the developers at IBM, Yacov Manevich and Konstantinos Christidis, who have pro-
vided valuable feedback and insights. There is limited research in the field of benchmarking
blockchain since it is a new research topic, which makes it harder to assess the validity of the
result. But this also makes this thesis a more interesting contribution to research. Blockchains
are still new and especially permissioned blockchains, therefor it is important to conduct
research which benchmark them, both towards each other but also towards other possible
competitors.

6.3 The Work in a Wider Context

The permissioned blockchain technology with its decentralized structure and immutable
record has many possible adaptations which can have ethical benefits. Property rights are
a good example of records that need to be immutable but also have few transactions over
time, compared to currency. Not everyone should be able to validate property owner-
ship changes, this makes it an excellent use case for permissioned blockchains. For land
and property ownership the Swedish Lantmdteriet is one early adopter of the blockchain
technolog Lantmateriet has partnered up with government agencies, banks, telecom-
munications provider, and other partners, but most importantly ChromaWay. ChromaWay
is the technical partner which has provided the blockchain solution. The blockchain so-
lution is ChromaWays’ product Postchain, which actually isn’t a blockchain but what
ChromaWays call a consortium database. Postchain is said to leverage on the desired
blockchain properties like linked timestamping and being decentralized yet working to-
gether with existing relational database and using SQL. Swedish Lantmaiteriet are using

1https: //www.lantmateriet.se/sv/nyheter-och-press/nyheter/2018 /blockkedjan-testad-live-kan-spara-
miljarder-at-bostadskopare-och-bolanekunder/
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Postchain to create what Graglia et al. [12] calls a smart workflow, which is the sec-
ond step out of eight towards a fully adopting blockchain technology to property reg-
istration. In Dubai the work has come two steps further towards full adaptation, and
they have successfully changed their centralized database to a permissioned blockchain.

Since blockchains never throw away data the blockchain will eventually get large and require
a lot of storage space. Therefore, applications that only have few transactions are better than
applications which requires many transactions. If the system only has a few transactions
per time unit, then maybe slow inserts isn’t a big problem, which we could see in the result
that Fabric has for larger networks. There are ethical benefits of putting property and land
transactions on a blockchain, if the blockchain is permissioned. This means that the history
of a property or piece of land is immutable and can be accessed, which could help with is-
sues such as illegal settlements, land frauds or disputes between neighbors of farming rightsﬂ

The blockchain technology is currently very hot, with many start-ups emergingﬂ as well
as older companies that are making a switch to blockchairﬂ More and more research is being
published but so far it is still not a well-studied area. Is there an over-optimism towards the
blockchain technology and will this lead to the creation of systems which are throw-away
systems? Will companies implement them only to realize it was the wrong use-case and lose
money and time? As always with new technology this risk exists. For example with the
Bitcoin blockchain we can see that it is praised for being fully decentralized. But because of
its low performance, off-chain transactions are becoming more and more common. Off-chain
transactions are essentially performed by a third party, thus removing the fully decentralized
feature. This means that instead of trusting a large group of unknown peers, or an institution
like a bank, the trust is now shifted to other parties. As seen in this thesis, the performance of
blockchains is still an issue and before this can be solved the effective use-cases for blockchain
are few.

tht-ps: / /www.reuters.com/article/us-africa-landrights-blockchain /african-startups-bet-on-blockchain-to-
tackle-land-fraud-idUSKCN1G00YK

3h’ttps: / /www.forbes.com/sites/andrewrossow /2018 /07/10/top-10-new-blockchain-companies-to-watch-for-
in-2018 /#6a66c2095600

*https:/ /www.forbes.com/sites/michaeldelcastillo /2018 /06 /06 / the-10-largest-companies-exploring-
blockchain /#2856a4b91343

42



Conclusion

When comparing permissioned blockchains to distributed databases it is clear that
at this moment in time distributed databases are the more mature technique. There
are more options of distributed database frameworks available compared to the num-
ber of permissioned blockchain frameworks. The available frameworks for permis-
sioned blockchains are all in the early stages of development, meaning that most
likely there will more options available as well as more mature options for permis-
sioned blockchains. For build-in support in cloud solutions it is also clear that there
is more support for databases. However, permissioned blockchains are on the rise
and both Amazon EC2 and Microsoft Azure are starting to support Hyperledger Fab-
ric, even though it is still only on a very small scale. This thesis work fills some gaps
in the knowledge needed before mature blockchain technologies become mainstream.

This area of research is new, to the best of our knowledge this thesis is the first work
which compares the latency of permissioned blockchains and distributed databases. This
makes the results of this work even more interesting and an important contribution to the
field of distributed systems.

7.1 Performance

Permissioned blockchains are new compared to distributed databases, yet this the-
sis shows that they are comparable to older techniques in terms on latency. When
it comes to creating linearizable consistency they perform better than older tech-
niques. This clearly shows that there will be several meaningful use-cases in the
near future where a permissioned blockchain will be a better choice than a dis-
tributed database. This is a surprising conclusion of this thesis since blockchains
in general are celebrated for their potential and not their actual performance.

Based on the experiments performed, we can see that Fabric pays for quick reads with
a slow transaction flow which gives a higher insert latency. Cassandra on the other
hand is more tuned to provide low insert latency at the cost of having a higher latency
when reading data. The insert latency for Fabric is lower than the insert latency of Cas-
sandra for the smallest networks. However, the insert latency of Fabric increases more
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for larger networks and Cassandra has lower latencies for 16 and 20 nodes. Therefore,
it can be assumed that Cassandra will continue outperform Fabric for larger networks.

The read latency has large variations for Cassandra because of the techniques,
such as caching, that Cassandra uses. There are small variations in read la-
tency for Fabric because the data is always found in the same place.  For in-
serting both systems have similar variations in latency, which are small up to
the 75th percentile but some outliers can have significantly higher latency. = What
causes these outliers is not clear, it is possible that it is fully circumstantial.

When it comes to different loads Cassandra has lower insert latencies than Fabric but Fabric
scales better. When it comes to latency of different throughput Fabric can be tuned by spec-
ifying the batchSize and batch timeout after what is the expected load on the system.
Since these adjustments can give large differences in latency it is important that the sys-
tem architect thoroughly investigates which values gives the best latency for the application.

For the different workloads no difference in latency could be seen for Cassandra ex-
cept that the insert and read latency are a bit lower for workloads with a lower fre-
quency of reads. This is because the read is a more complex operation than the in-
sert and uses more resources. For Fabric read-intense workload 1 yielded higher la-
tencies for read and insert operations. This leads to the conclusion that the peers
are the bottleneck and not the ordering service, which is also one of the conclusion
of Androulaki et al. [3]. This result might be affected by the co-locating of peers.

The result presented in this thesis does not necessarily apply to all permissioned blockchains
and distributed databases, future work should be extended over more instances of both
techniques to determine this. When choosing between a permissioned blockchain and a
distributed database the most important aspects to consider is the application that should
run on top of it. Some things to consider are:

o If the user will need to fetch data quickly then Fabric might be a good choice.

o If the data is going to be updated and/or inserted frequently and accessed more infre-
quently, then Cassandra is preferred.

e Does the application require linearized consistency? In that case Fabric is a good choice
since consensus is pluggable and always integrated in the transaction flow. Cassandra
does support it but is not optimized for it.

o Although it is not covered specifically in this thesis the number of data objects and
the number of insert and/or update operations on these data objects is an important
factor. Blockchains never throw away data and can therefore grow large quickly if the
application is not tuned after this fact.

7.2 Hybrid Solutions

Since permissioned blockchains still comes with some limitations in terms of performance
and maturity new hybrid solutions have emerged. Postchain is what the company Chrom-
aWay calls a consortium databaseﬂ Postchain is said to combine the benefits of blockchains
with the maturity of distributed databases by leveraging on the desired blockchain prop-
erties like linked timestamping and being decentralized yet working together with existing
relational database and using SQL[12]. Another example of a similar product is BigchainDB

https:/ /chromaway.com /products/postchain/
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which is a distributed database with added blockchain characteristics like immutability, de-
centralization and the option to chose permission property per transaction ﬂ This shows
that the lines are getting blurred between databases and blockchains and that some com-
panies prefer to cherry-pick the desired features of both technologies. Since neither a strict
blockchain-solution nor a strict database-solution is the best option for all problems this is
good news. It also illustrates the current gap between how popular the blockchain technol-
ogy is and how far the technology has actually come.

7.3 Future Work

For future work in this field there are several extensions possible. One possible extension
to this thesis is to perform the same experiments on a distributed network with one ma-
chine per node. Several network solutions are possible, Microsoft Azure and Amazon EC2
or building it with local servers. This would mean that the results would not have the same
type of overhead from the network and this would have to be estimated differently. Using
latency as the round trip time is still feasible since it only relies on one clock. The work could
also be extended to include more databases and permissioned blockchain frameworks, for
example MongoDB, HBase, Parity and Ethereum, in the same experiment. When choosing
frameworks, it would be important to consider the properties of them to ensure that the study
will get a representative mix of both technologies. Hybrid solutions such as BigchainDB or
Postchain could also be included. Another option is to use the benchmark tool Blockbench
presented in the paper by Dinh et al. [10] and modify it to handle databases as well. Then
Fabric and Cassandra could be compared again, or more frameworks could be included. An-
other option is to take workloads from YCSB and build new a benchmarking framework
which works for both permissioned blockchains and distributed databases.

2h’ttps: / /www.bigchaindb.com/
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