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Abstract—As proof-of-work blockchains are inherently energy
greedy and offer probabilistic guarantees, blockchains based
on Byzantine consensus appear as a promising technology to
track billions of connected devices. In this paper, we evaluate
the performance of prominent blockchains that solve the classic
Byzantine consensus problem. Our results show that while
offering reasonable throughput their performance usually do not
scale to tens of devices and drops dramatically as the number
of devices increases. This study motivates the need for solutions
that solves the Blockchain consensus problem, a scalable variant
of the classic Byzantine consensus problem but dedicated to
blockchains.

Keywords—Private blockchains, consortium blockchains, In-
ternet of Things

I. INTRODUCTION

Blockchain is promising but enterprises have been reluc-
tant at adopting proof-of-work blockchains [1]] because they
offer probabilistic guarantees [2f, can be subject to double-
spending [3]], especially in a consortium or private context [4].
Instead, consortium and private blockchains, which often solve
deterministically the classic Byzantine consensus problem,
are typically more secure when some assumptions are met.
As classic Byzantine consensus protocols [5] were originally
designed for small networks, it remains unclear whether one
can adapt them to scale to numerous blockchain devices as
required by the Internet of Things (IoT).

To address this problem, we evaluate prominent consortium
blockchains, including Hyperledger Fabric (HLF) v0.6 with
the Practical Byzantine Fault Tolerance (PBFT) consensus
protocol [5]], HLF v1.0 with the Byzantine Fault-Tolerant State
Machine Replication (BFT-SMaRt) consensus protocol [6],
and Ripple with the Ripple consensus protocol [7]]. Some
efforts were recently devoted to evaluate blockchains [J]],
however, they aim at comparing the performance of inherently
slow proof-of-work blockchains to faster blockchains based
on Byzantine consensus but we are not aware of experimental
evaluation focused on energy-efficient technologies.

Our results show that these blockchains are reasonably fast
but their performance degrade significantly with the increase
in the number of devices.

II. RELATED WORK

Various blockchains have been proposed for different pur-
poses, but only few proposals aim at targeting the Internet

of Things (IoT). Applying blockchains to IoT will likely
require to adapt some of the mechanisms of already existing
blockchains, especially their consensus implementation.

R3 explored various blockchain technologies, including
Ethereum [4]], before proposing a distributed ledger, called
Corda [9]], mainly to process and record transactions between
financial institutions. Corda aims at supporting two consensus
protocols, Raft [[10] and BFT-SMaRt [6]]. As the former is
insecure, we focused our attention on the latter that tolerates
less than % malicious behaviours: BFT-SMaRt is a high per-
formance Byzantine Fault Tolerant State Machine Replication
that relies on a leader to solve the classic Byzantine consensus
problem that predates blockchains. At the time of writing its
implementation in Corda was not ready, so we focused on the
variant of Hyperledger Fabric that implements BFT-SMaRt as
well.

Hyperledger Fabric v0.6 is a customizable consortium
blockchain platform [11] that supports smart contracts called
“chaincodes”. Chaincode supports existing programming lan-
guages like Go and Java. Hyperledger Fabric v0.6 relies on
PBFT, a Byzantine consensus protocol that was designed 16
years ago for local area network and is still prominent to-
day [5]]. As Hyperledger Fabric v1.0 is known to be insecure in
the presence of malicious behaviors [12], a fork of v1.0 master
branch was changed to invoke a BFT ordering service based
on BFT-SMaRt. This branch uses gRPC and supports only
timestamp broadcast rather than the message types offered by
the main branch but copes with malicious behaviors.

Ripple is a blockchain platform with a strong focus on
financial applications. It sets a wide range of transactions for
accounts and their XRP currency exchanges, but it lacks the
support of smart contracts. It runs its own Ripple consensus
algorithm [[7]. Although the correctness of the Ripple consen-
sus algorithm has been debated [13]], it is out of the scope of
this paper to prove whether the code is correct.

IOTA [14] is a cryptocurrency for IoT. As opposed to the
classic Byzantine consensus technologies, it does not totally
order transactions but builds a directed acyclic graph (DAG) of
transactions, called Tangle. To commit new transactions, [OTA
requires currently a single coordinator, which may become
a single point of failure, as the failure of this coordinator



prevents transactions from being executecﬂ IOTA is still under
development and expected to be decentralised in the future.
Commercial products also rely on DAG of transactions [15],
unfortunately their code is not available.

The Red Belly Blockchailﬂ relies on recent variants of con-
sensus, called Blockchain Consensus [16], especially designed
for scalability. Its analysis is part of future work.

III. EVALUATING BYZANTINE CONSENSUS BLOCKCHAINS

The main focus of this study is the comparison and analysis
of mainstream secure blockchains. We selected the three
following blockchain platforms:

1) Hyperledger Fabric v0.6 with PBFT consensus [5]. In
particular, the reason why we complemented our study
with the prototypical HLF version using BFT-SMaRT is
because the consensus of HLF v0.6 is known to have
unresolved bugs

2) Ripple with the XRP consensus algorithm [7]]: In Ripple,
a validator is usually a trusted node that is authenticated
by Ripple Inc. in the public network. To speed up the
execution, we created our own local validator rather than
a public validator.

3) Hyperledger Fabric, based on v1.0, with BFT-SMaRt
consensus [[6]. Because this branch uses gRPC, which
supports only timestamp broadcast rather than the mes-
sage types offered by the main branch, we had to adapt
our benchmark when using BFT-SMaRt.

A. Distributed Experiments

We ran some experiments on a distributed system of 32
machines using Emulab, an environment providing intercon-
nected heterogeneous and physical machines for distributed
system experiments. To this end, clients ran Node.js v6.11.4
on Ubuntu 16.04 to generate the load with 2 types of machines
equiped with:
o Two 64-bit E5-2630 Haswell processors with 8 cores
running at 2.4 GHz, 64 GB 2133 MT/s DDR4 RAM (8
x 8GB modules), one Intel SATA SSD with 200 GB and
2 x 1 TB 7200 rpm SATA disks.

e One 64-bit E5-2630 Nehalem processor with 4 cores
running at 2.4 GHz, with 12 GB 1066 MHz DDR2 RAM
(6 x 2 GB modules), one Seagate SATA disk with 250 GB
and one 500 GB 7200 rpm Western Digital SATA disk.

B. Adapting the Workload to the Blockchain APIs

The difficulty in evaluating different blockchains lies in the
lack of interface standards. We constructed a generic workload
that performs the same functions on the different blockchains
interface. Because, smart contracts are not supported by Rip-
ple, we designed the workload to perform a transfer from an
account A to another account B with the amount 1.

Uhttps://cryptovest.com/news/iotas- 53-hour-network- standstill- heightens-
investors- worst-fears,

“http://redbellyblockchain.io.
3https://jira.hyperledger.org/browse/FAB-707,

TABLE I
PARAMETERS OF THE WORKLOAD
Parameter Description
Method The HTTP method used for the request
HTTP Headers HTTP Headers of the request
HTTP Data HTTP Data of the request(can be a JSON string)

1) The HLF v0.6 API: 1t provides operations that maintain
key-value pairs, also called states. Therefore, to create an
account, the client can just put a key as the username as
well as a corresponding value standing for the balance with an
initial value. The transfer of money is represented as an atomic
operation that the balance of A decreases and the balance of
B increases.

Operations which change the state by the function
PutState () are non-blocking operations called invocations.
Therefore, the client can know whether the transaction has
been executed only if it queries the blockchain, which is a
blocking operation.

2) The Ripple API: 1t specifies the format of an account
as a hash value, which is created by a passphrase, included
in the network with the consent of the root account, and
activated by a transfer from another existing account to it.
The transfer transaction is called payment in Ripple. Therefore,
we designed a workload for Ripple as a payment transaction
from an account to another account activated in this network
with amount 1, which is identical to the transaction in HLF.
Similarly to HLF, the Ripple interface is non-blocking in that
a transaction commitment is not acknowledged.

3) The HLF with BFT-SMaRt API: 1t is an experimental
branch of the BFT ordering service for HLF. The current
version only supports the timestamp broadcast message type,
and was tested in order to make a comparison with PBFT
ordering in HLF v0.6. As opposed to HLF v0.6, this newer
version uses gRPC.

C. Applying a Workload on the Blockchains

All experiments were based on the loadtest library of
Node.js, which is a tool for testing the performance of a
backend service by sending requests. This homogenises the
interfaces of the blockchains as both HLF and Ripple supports
it through HTTP.

A single HTTP request is defined as a JSON object, which
guarantees that the transaction submissions to Ripple and
HLF are identical. Again, the transaction invocations are non-
blocking. In other words, when a transaction is submitted by
HTTP, an HTTP response about the status of the transaction is
sent from the server, while the transaction is being processed.
The client cannot know if the transaction has committed unless
it queries the server again.

The loadtest framework provides the control over the re-
quests sent to the cluster. It offers the possibility to test
both platforms by specifying the workload and the scheme
of sending workloads. Critical parameters of the workload
are listed in Table |l which correspond to characteristics of
the HTTP protocol. We increased the workload in terms of
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TABLE II TABLE IV
PARAMETERS OF THE EXPERIMENTAL SETTINGS PARAMETERS OF THE EXPERIMENTS FOR HLF v0.6 AND RIPPLE
Parameter Description Parameter HLF v0.6 Ripple
Endpoint The URL of receiving requests Endpoint localhost:7050/chaincode  localhost:5005
Concurrency The level of concurrency Concurrency 10 10
Max Seconds The duration of sending requests Max Seconds(s) 10 10
Workload The workload definition Start QPS 200 500
Start QPS The requests per second when the testing starts QPS Stride 200 500
QPS Stride The increase of the QPS to the last QPS End QPS 4000 5000
End QPS The highest QPS of the test Sleep Period(s) 20 20
Sleep Period The period of rest between different QPS testing
2000

TABLE III
PARAMETERS OF THE WORKLOADS FOR HLF V0.6 AND RIPPLE
Parameter HLF v0.6 Ripple
Method POST POST
MIME Type application/json application/json
HTTP Data Invoking chaincode = Payment transaction

request rate step by step and finally gathered related metrics
under different request rates. The parameters of a single load
testing are listed in Table

1) Requests: As for HLF v0.6, to enable a customized
transaction we deployed a corresponding chaincode, coded in
the high-level programming language Go. The official example
includes a chaincode supporting a simple money transfer
transaction, which is deployed on the cluster first, then the
cluster accepts multiple requests invoking this transaction.

Ripple has a set of well-defined transactions but lacks the
support of customized transactions. The defined transactions
are related to financial systems, including the transfer. How-
ever, accounts are inactive at first. The account address is
derived from the public key of it, which is generated by a
set of cryptographic steps. To activate an account, another
account should transfer an amount of money to its address.
The paid address will be activated if the amount reaches the
threshold, which is decided by the whole network dynamically.
Therefore, to experiment on a private Ripple network two
accounts should be activated via the approach above.

However, HLF with BFT-SMaRt ordering only supports
the timestamp broadcasting with gRPC rather than other
transaction types like the smart contract invocation. Therefore,
the testing of BFT-SMaRt ordering was done by its inherited
performance testing module. For all the experiments, we use
a single orderer. While their role is unclear, changing the
number of orderers does not seem to impact performance
significantly [12].

2) Testing Steps: Based on the aforementioned principles,
the testing consists of multiple automated steps: (1) Setting up
the cluster, (2) deploying the chaincode (for HLF), (3) activat-
ing accounts (for Ripple), (4) setting parameters of workloads,
(5) setting parameters of sending workloads, (6) launching the
load testing for 10 times, (7) analyzing the results. Parameters
of Step (4) and Step (5) for both platforms are listed in
Table [[TT] and Table respectively.
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Fig. 1. The throughput of a node with the increase of the request rate in
HLF v0.6. The QPS first increases but then drops sharply, finally becomes 0.

IV. RESULTS AND ANALYSIS

The load was applied over 4,8,12,16, 20, 24,28 and 32
independent physical machines. In this section, we describe
the observed results and we analyze the performances of
the chosen platforms. HLF with BFT-SMaRt consensus is
evaluated separately because of its differences.

A. Metrics of the Load Testing

1) Query per Second: The number of queries per second
(QPS) is a common indicator of throughput of a system. It
translates into the number of requests the server can treat
within a second [17]. The request usually refers to the HTTP
request. Obviously, the more requests the system processes in
a second, the better it performs.

2) Latency: The latency is the system delay. In other words,
it means the delay of a request or a task which the system
processes [[17]]. A system usually processes multiple requests,
so the latency is usually the average value of latencies in
a period. As the invocations are non-blocking, we did not
compute the latency as the time between a transaction is
invoked and its commit is acknowledged.

B. Blockchain Throughput as the Request Rate Increases

The result of HLF v0.6 is shown in Fig. [T| whereas the result
of Ripple is shown in Fig [2] In both figures, we observe that
for each cluster, the throughput in either system increases with
the growth of the request rate first, and then reaches a peak.
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Fig. 2. The throughput of a node with the increase of the request rate
in Ripple. The trend is similar to the HLF v0.6.
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Fig. 3. The peak throughput of a node with the increase of the number
of nodes in HLF v0.6 and Ripple.

However, after reaching the peak the throughput decreases
sharply with the increase of the request rate, because the
system cannot handle the demand.

Moreover, for either system, the trends of throughputs
with different cluster sizes are similar, which means that the
performance has no trend of increasing with the increase of
nodes. In other words, consensus algorithms of Ripple, HLF
v0.6 consensus, do not scale. Note that this limitation is well-
known for classic BFT consensus algorithms because they
solve a slightly more restrictive problem than the blockchain
consensus [16]. In particular, both PBFT and BFT-SMaRt rely
on a leader, which may act as a bottleneck [16].

C. Peak Throughput with the Increase of Nodes

The results of HLF v0.6 and Ripple consensus are depicted
in Fig. 3] whereas Fig [] depicts the results of HLF v1.0.

As expected, the peak throughput decreases with the in-
crease of the cluster size in Ripple. The more nodes involved in
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Fig. 4. The peak throughput of a node with the increase of the number
of nodes in HLF with BFT-SMaRt consensus.

a cluster, the more messages are exchanged. For a Ripple pri-
vate network with only one validator, transactions are batched
and sent to the validator, so that the validator should process
numerous requests. Therefore, if the number of validators and
machines running validators remains the same, the consensus
does not scale.

Meanwhile, the HLF v0.6 cluster’s performance fluctuates
with the increase of nodes, as well as the HLF with BFT-
SMaRt consensus. Traditional PBFT consensus is used in HLF
v0.6 so that the broadcast operation is always involved in
the consensus, which creates multiple requests at a time in
every node. The bottleneck effect at the leader prevents the
consensus protocol from scaling.

As for BFT-SMaRt consensus in HLF, all traffic should
go through the centralized nodes called orderers. Though
the performance can scale by adding more orderers, it is
impossible for the cluster to only have orderers but not have
simple clients because of its nature. With the same number
of orderers, the performance will not scale if the number of
clients increases.

D. The Relation between Throughput and Latency

With the increase of the request rate, the latencies of both
HLF v0.6 and Ripple first increase then decrease sharply, as
shown in Fig [5] and Fig [] The increase of the latency is
because of the congestion control of the TCP protocol which
prevents the computer from serving overwhelming requests
simultaneously. The followed decrease is because systems are
out of work. With TCP’s underlying congestion control, if
too much data comes to the server suddenly, the “slow start”
mechanism will limit the reception rate on the server side and
the “congestion avoidance” will half the congestion window if
the network congestion is detected. Therefore, the high request
rate will contribute to increasing latency because of triggering
the network congestion.
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V. LIMITATIONS WHEN SETTING UP HLF v0.6

HLF v0.6 depends on Docker containers, where chaincodes
are encapsulated and invoked by external requests. HLF clients
communicate with chaincodes in Docker containers using
Unix sockets or HTTP within the machine or endpoint. The ex-
periment was launched on Ubuntu 16.04 OS. However, Ubuntu
16.04 adopts the systemd service manager rather than the
previous initd, by which Docker starts as a service rather
than applying configurations in /etc/default/docker.
This causes the Unix socket endpoint to remain closed by
default. Therefore, starting an HLF client with the same step
as on previous versions of Ubuntu will fail on Ubuntu 16.04.

VI. CONCLUSION

This paper presents the first evaluation of Byzantine-tolerant
blockchains that could be adapted for IoT. Our results are
preliminary but show that more work is necessary for main
secure blockchains to scale to large number of devices. This
seems to confirm the well-known inadequacy of Byzantine

consensus to large-scale blockchains. This limitation can be
due to Byzantine consensus requiring one proposal to be
decided. A natural future work is thus the comparison of
these blockchains solving the Byzantine consensus problem to
recent efficient solutions that solve the Blockchain Consensus
problem [16]], like the Red Belly Blockchain.
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