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1 Abstract—Hyperledger Fabric is a permissioned ledger plat-
form designed to be highly modular and extensible, delivering
confidentiality, privacy and scalability to enterprise blockchains.
With Fabric’s production grade availability in mid-2017, enter-
prises are experimenting with Fabric for building real-world
blockchain applications.

In this paper, we characterize the performance and scalability
features of the current production release of Fabric (v1.0). This
paper takes an experimental approach, where we study the
throughput and latency characteristics of Fabric by subjecting
it to different sets of workloads. Through a suite of micro-
benchmarks, custom-built for Fabric, we tune different trans-
action and chaincode parameters and study how they affect
transaction latencies. Finally, we also conduct experiments to
study Fabric’s performance characteristics while increasing the
number of chaincodes, channels and peers.

I. INTRODUCTION

Blockchain technology has opened up opportunities for new
kinds of applications that enable elegant data sharing across
organizational boundaries where all entities can collectively
own and manage the shared data. Though often confused as
an alternative for relational databases or big data solutions,
blockchains are not a solution or a replacement for them.
Blockchains are particularly attractive for applications that
require multi-party reconciliation, trusted intermediaries, and
high degree of transparency, auditability and integrity. While
blockchains are currently popular in the public permissionless
space with Bitcoin [1], Ethereum [2] and other cryptocurren-
cies making headlines [3]–[5], enterprise blockchain applica-
tions are emerging, and may soon be deployed at production
scale.

Blockchain platforms enable speedy development of appli-
cations by abstracting out the low-level details about trans-
actions, blocks and ledger structure, underlying protocols and
consensus models, allowing developers to focus on application
design and development. The success of real-world applica-
tions will depend on providing a frictionless user experience
as well as good performance and scalability.

Hyperledger Fabric [6] is one of the popular permissioned
blockchain platform hosted by the Linux Foundation’s Hy-
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perledger project [7]. This platform is built for business
consortia interested in building and deploying their blockchain
applications with shared data. It is designed to meet the confi-
dentiality, privacy and scalability requirements of applications.
Fabric requires that the participating organizations are known
a priori and that each participating organization is provisioned
into the network during blockchain set-up. While Fabric is
built with scalability in mind, little data exists on what kind of
performance and scalability one can expect from this platform
while targeting real-world applications. Through this work, we
strive to shed some light on these questions.

This paper makes the following contributions:
• We present an experimental approach to characterize the

throughput and latency of Hyperledger Fabric 1.0, the
first production grade release.

• Through a suite of micro-benchmarks custom-built for
Fabric, we study its performance characteristics, thereby
highlighting different aspects of transaction and chain-
code parameters that have an impact on transaction la-
tencies.

• We also perform scalability experiments where we study
how Fabric performs when scaling chaincodes, channels
and the number of peers.

• The toolkit that we built and used in our experiments
is open-sourced and publicly available for use by the
community [8].

This paper is organized as follows. In Section II, we provide
a brief overview of Hyperledger Fabric 1.0 describing its
architecture, transaction flow, ordering and chaincode exe-
cution mechanisms, providing enough background for the
reader to follow the experiments described in the rest of
the paper. In Section III, we characterize the throughput and
latency of the Fabric platform with controlled workloads. In
Section IV, we describe our micro-benchmarking experiments
that measure the effect of tuning different transaction and
chaincode parameters on transaction latencies. We cover some
scaling experiments in Section V, describe related work in
Section VI and finally describe some key insights and conclude
in Section VII.

II. HYPERLEDGER FABRIC OVERVIEW

Hyperledger Fabric hosted by the Linux Foundation was
the first consortium blockchain platform with production-
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Fig. 1: Fabric transaction flow diagram

grade availability of its offering. Subsequently, Multichain [9],
CORDA [10] and Quorum [11] also released their production-
grade offerings. Fabric with its smart contract support is gener-
ically well-suited for a range of applications across several
domains. A more detailed understanding can be obtained from
the Fabric documentation available online [12].

Fabric enables participating organizations within consortia
to build and deploy blockchain applications. The blockchain
network consists of several nodes (or peers) that host the
blockchain, execute smart contracts (known as chaincode) and
collectively maintain the state of the ledger. Chaincodes can be
shared by all entities within a consortium or could be privately
deployed to be accessible to a subset of entities. Private
chaincodes are run only on peers with whom the chaincode
is shared and is inaccessible to others. This is achieved via a
concept of channels in Fabric where all chaincode and data
on the channel is only accessible to entities that are part of
the channel. In the setup phase, the peers need cryptographic
material that is generated to identify and authenticate the peers
to the blockchain network. In this way, it can be determined
whether a given peer belongs to a particular channel. In
addition to peers, the Fabric network also needs an ordering
service/orderer. The ordering service performs a total ordering
of the transactions accepted by the Fabric network on a per-
channel basis. The current production version does not support
any form of consensus algorithm for ordering. It is expected
to be incorporated in the future versions. Note that the older
version of Fabric (v0.6) supported Practical Byzantine Fault
Tolerance [13] based consensus, which was later removed in
the production version.

Transactions in Fabric are invocations of chaincode
methods. The chaincode itself is run within a Docker
container thus isolating itself from the Fabric code as well
as other chaincodes running on the same peer machine. Each
chaincode has a persistent state called the key-value store.
Chaincode methods manipulate the values of the key-value
store using put and get methods that essentially allow it

to write and read from the key-value store. The key-values
are stored internally within a LevelDB database [14] on the
same node. Fabric also has support for CouchDB [15] as an
alternate database implementation that can be used to store
key-value pairs.

Transactions in Fabric go through the following steps as
shown in Figure 1:

1) Client initiates a transaction: A client prepares a request
proposal to invoke a chaincode function. The request is
signed by the client and sent on the channel where the
chaincode is deployed. The number of endorsements that
it expects to receive is as per the endorsement policy of
the chaincode.

2) Endorsing peers verify signature and execute the trans-
action: The endorsing peers perform all the valid-
ity checks for well-formedness, authenticity, replay-
protection and client authorization. If all checks are
successfully cleared, the peers execute the transaction
against their own key-value stores and produce a re-
sponse that include read-write sets generated as a result
of chaincode execution. These values, signed by the
peers are sent back to the client as a proposal response
or endorsement. No changes to the ledger are made at
this point in time.

3) Client collects endorsements and sends to the ordering
service: The client examines and compares all the en-
dorsements and verifies that it has met the endorsement
policy requirements of the chaincode. If the request was
a read request, it does not send a request to the ordering
service. If the request is a chaincode invoke (or write),
it assembles the endorsements into a transaction and
sends it to the ordering service for inclusion into the
blockchain. The ordering service verifies transactions
and orders them per channel.

4) Transaction is validated and committed: Ordered trans-
actions within blocks are delivered to all peers on the
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channel by the ordering service. The peers verify the
transaction and endorsement policy fulfillment; if all
checks go through, the peers add the block to the ledger.
Note that all peers have to commit the transaction (and
therefore play the role of a committing peer), while
endorsement can be delegated to only a subset of peers
on the channel and are referred to as endorsing peers
(EP), as shown in the Figure 1.

The ordering service can be run in two modes - the solo
mode and the kafka mode. In the solo mode, a single ordering
service node performs the ordering of all transactions in the
network. In the kafka mode, ordering service nodes can be
distributed and use a Kafka cluster to produce and consume
transactions. A pub/sub topic in the Kafka cluster corresponds
to a channel within the blockchain network. The kafka mode
provides crash fault tolerance and is therefore recommended
in real-world deployments.

III. CHARACTERIZING LATENCY AND THROUGHPUT

Transaction throughput is defined as the number of trans-
actions per second successfully processed by the blockchain
network. A transaction is successfully processed when it is
included in a block and committed as part of the ledger.
Transaction latency is the time elapsed between when a
request is sent, to the time when the response is received by
the client. For read transactions, it is the time taken to receive
the response for a read query. For invoke transactions, it is the
time elapsed between the request and an event confirmation
as received by the client after the transaction is confirmed on
the blockchain.

A. Experimental Setup

Fig 2 shows the experimental setup we used in all our
experiments (exceptions are noted in the respective section). A
blockchain consortium was setup with two organizations Org
1 and Org 2; each contributed two peers to the blockchain
network. The ordering service was run on a separate node
run by a third-party Org 3; Org 3 being a neutral entity.
The endorsement policy on transactions was set to include
signatures from at least one peer from each organization to
successfully commit on the blockchain. Both organizations
had a single channel that was set up between them and
all chaincodes were deployed on this channel. The Ordering
Service Node (OSN) was run in the solo mode. The ordering
service parameters used were the default parameters, where the
BatchSize was 500 and BatchTimeout was 1 second.
The peers were run on four hardware machines within our
local network. Each machine had 8 vCPUs (4 cores at 3.6
GHz with hyperthreading) and 16 GB RAM. We used four
more machines with the same configuration to run the clients.
All nodes had the Ubuntu 14.04 LTS operating system and
were connected to each other with a 1 Gbps switch.

B. Client configuration

We use the Caliper benchmarking tool [26] developed by
Huawei Technologies to generate the client workload. Using
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Fig. 2: Experimental setup

Caliper, we can send controlled workloads to the blockchain
platform and measure the resulting transaction throughput and
latencies. Caliper runs on the client machines and broadcasts
transactions on the Fabric channel. It listens to block events
from peers to check for transaction confirmations on the
blockchain and assigns those transactions a completion
timestamp. It calculates transaction throughput and latencies
using the transaction timestamps.

We made the following changes to the Caliper code to be
able to successfully launch controlled workloads at high send
rates:

1) The load generated by the client was equally balanced
across all the consortium peers within the consortium
network.

2) The Caliper client was missing out certain block events
at higher transaction rates resulting in failed transactions.
This was because the Caliper client itself was single-
threaded and was performing both functions of sending
transactions as wells as processing block events. We
modified the client to spawn a new process that essen-
tially splits the the two functions into separate processes.
A newly spawned process only listens to block events
and inserts them in a messaging queue to be processed
later by Caliper’s main process. By having a separate
process listen continuously to block events, we have
completely eliminated occurrence of failed transactions
due to missed block events at higher transaction rates.

C. Load Generation

Caliper is run on all the client machines. Each client sends
transactions to at least one peer from each organization within
the consortium. Each experiment sends transactions with a
send rate starting from 25 tx/sec to 400 tx/sec, which was the
maximum capacity for client nodes used in our experiments.
The blockchain network therefore collectively experiences a
transaction load ranging from transactions received by all the
clients. Each client sends transactions at a specified send rate,
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Fig. 3: Latency and throughput measurements for varying input load

halts for 5 secs, and starts the next round. The experiment
is repeated for three rounds. At the end of the third round,
an average of the throughput and latencies is calculated. The
blockchain network is subject to a maximum of 48000 total
transactions. We also note the CPU utilization and memory
consumed on the peers for the duration of the experiment.

D. Workloads

For all workloads, the chaincode is deployed and pre-loaded
with key-value pairs. We used the following workloads.

• Write workload (R0,W100): The write workload com-
prises of all write transactions that update a value for
a randomly selected key in the key-value store of the
chaincode. In Fabric, this involves calling the invoke
function within the chaincode. Write generates a transac-
tion that goes through the three phases of endorsement,
ordering and commitment.

• Null workload (R0,W0): The null workload comprises
of transactions that call a function within the chaincode
that simply returns. The null invoke function also goes
through the same three phases of endorsement, ordering
and commitment and therefore represents a baseline of
how write functions perform.

• Read workload (R100,W0): The read workload comprises
of read transactions that read the values for randomly
selected keys from the key-value store within the chain-
code. The read workload is generated by all clients
sending their transactions to a single peer. This design is
intentional as reads are served locally by the peer by per-
forming lookups within its local database. Reads do not
generate a transaction that confirms on the blockchain.

• Mixed workload (R50,W50): Read-write workload has a
50-50 mix of reads and writes. This mix submits all
transactions with the same endorsement policy as used for
writes. While the write transactions undergo the normal
transaction flow, read queries are sent to, and need to
receive responses from two peers (instead of one as in

the case of the read workload) as per the endorsement
policy of the chaincode.

E. Throughput and Latency Measurements

Figure 3 shows the latency and throughput measurements
for all the four workloads. The maximum load of 1600 tx/sec
was generated on the blockchain network with four clients,
each generating a load of 400 tx/sec. The results show that
for the given range of transaction rates, read throughput
scales linearly for the entire range. This is expected as reads
are served locally by the peer machine from its LevelDB
database, which is highly optimized for lookups. It is also seen
from the figure that the write workload latencies mimic the
null workload, clearly indicating that the delays involved are
mainly in completing the three phases of the write transaction,
with a smaller fraction of the time spent in actually updating
the key-value state. This is also partly true because each
transaction performs only a single write operation into the
key-value store. We study how the number of key-value entries
read and written affect transaction latencies in Section IV-A.

For the write workload, the throughput rises almost linearly
until a load of 1000 tx/sec, with 968 tx/sec being the highest
achievable throughput. When the load is increased beyond this
point, the performance starts to degrade. The write workload
performs almost the same as the null workload closely up until
a load of 1000 tx/sec, after which the write workload gives a
slightly lower throughput compared to the null workload. Ad-
ditionally, after 1000 tx/sec, transaction latencies experience a
steep increase. Note that these experiments were carried out
with the default orderer settings as described in Section III-A.

F. Tuning Orderer Batch Size

The orderer BatchSize parameter dictates the number of
transactions that get bundled into a block. To study the effect
of throughput degradation after a transaction load of 1000
tx/sec, we tuned the orderer BatchSize parameter (specif-
ically changing BatchSize.MessageCount and tuning
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Fig. 4: Effect of endorsement policy on transaction latency and throughput

out the other parameters) to check if a larger batch size helps
in improving the throughput. The ordering service uses other
parameters within BatchSize and BatchTimeout, which
together control when blocks are created from transactions.
The BatchTimeout is the amount of time the Orderer
waits before creating a block irrespective of number of trans-
actions in it. The orderer creates a block when either the
BatchSize has the specified number (or size) of transactions
in it or the time window has elapsed in which case it batches
all available transactions at that point in time. By default,
the BatchSize.MessageCount is set to 500 and the
BatchTimeout is set to 1 sec by Caliper.

Input Load (tx/s) Batch Size Throughput (tx/s)
1200 250 731
1200 500 801
1200 1000 1161
1200 1200 917
1400 500 869
1400 1400 1227
1600 500 812
1600 1600 1078

TABLE I: Effect of Orderer BatchSize on throughput

In this set of experiments, we tried to alter the BatchSize
of the orderer to accommodate larger number of transactions
within a block for higher transaction loads. We tune out
the BatchTimeout parameter by setting it to a very high
number. Table I shows an improvement in throughput for the
higher input transaction loads of 1200, 1400 and 1600 where
the throughput was declining after 1000 tx/sec. This indicates
that the orderer BatchSize setting has a significant influence
on the resulting throughput of the system. On the other hand,
having a smaller BatchSize (e.g. refer to Row 1 of Table I)
reduces throughput as more number of blocks and block events
are generated. In Fabric, this setting is specified when the
orderer is bootstrapped and can be updated at a later time.
Fabric could benefit significantly if this parameter could be

tuned dynamically at run-time by the orderer based on the
perceived instantaneous total load on the system.

G. Effect of Endorsement Policy

In the previous experiments, the endorsement policy of the
chaincode was set such that one peer from each organization
needed to endorse every transaction. This represents a basic
chaincode between two business entities where both the orga-
nizations need equal amount of control in admitting incoming
requests. Hence, the client has to send the transaction and
await responses from two endorsing peers (EP).

In this experiment, we study the effect of endorsement pol-
icy on the latency and throughput at different send rates. While
it is expected that there will be an decrease in the latency
and an increase in throughput with fewer endorsements, we
wanted to quantify the impact. For these set of experiments,
we changed the endorsement policy such that a single peer
from either organization could endorse the transaction. The
resulting latency and throughput measurements are shown in
Figure 4. It can be seen that for up to an input load of 1000
tx/sec, there is almost no difference either in throughput or
latencies with either endorsement policy. Beyond that point,
the transactions with single endorsements perform better that
those that need two.

Though tweaking the order batch size and endorsement
policy improves throughput after the input rate increases
beyond 1000 tx/sec, the throughput does not increase linearly.
We see that the bottleneck exists at the committing peer as
this version of Fabric does not utilize all available CPU cores
to commit transactions in parallel. Therefore at higher rates,
the throughput plateaus to the maximum of what a single core
can process per second.

IV. MICROBENCHMARKING EXPERIMENTS

In these sets of experiments, we use our custom-built
suite of micro-benchmarks, which tune different transaction
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and chaincode related parameters to observe their effects on
transaction latencies. The suite has a total of five benchmarks
that vary read-write set sizes, populate different size key-
value stores, vary chaincode and event payload sizes, measure
the chaincode execution overhead and perform chaincode to
chaincode invocations.

For each of the experiments described below, we run the
micro-benchmarks and record transaction latencies averaged
across a large number of runs. These experiments used only
a single client to submit transactions and a single peer which
acts as the endorser as well as the committing peer. A separate
orderer running in the solo mode orders the transactions. The
orderer setting is such that it immediately creates a block
when a single transaction is received. End-to-end latencies are
measured by sending one transaction at a time. The latencies
are broken down into three components which show the time
taken for the three different steps as measured by the client.
The c2e latency is the amount of time taken to send the
transaction to the endorsing peer and receive a response for
it. The e2o latency is the time taken by the client to contact
the ordering service and get an acknowledgement. The o2v
latency is the time taken for the transactions to be ordered to
form blocks and confirmed by the committing peers.

A. Transaction Read-Write Set Size

Each blockchain transaction contains a read-write set. The
read set includes the set of keys that are read by the transaction
and the write set contains a set of key-value pairs that are
written by the transaction. A read-write set of 2x entries
comprises of a read set of x entries and a write set of x entries
as indicated in column 1 of Table II.

The goal of this experiment was to study how transaction
latencies vary with increasing read-write set sizes. This ex-
periment was conducted as follows. The key-value store is
initialized prior to the experiment. The client generates the
appropriate load by calling the chaincode function to perform
the correct number of reads and writes to the chaincode key-
value store.

RW Set size Latencies (s)
(#entries) c2e e2o o2v Total latency
2 x 1000 0.238 0.008 0.120 0.366
2 x 0.3 Million 73.520 0.953 5.680 80.153
2 x 0.6 Million 147.650 1.887 12.630 162.167
2 x 1 Million 252.769 3.076 25.472 281.317

TABLE II: Transaction latency variation with RW set size

Table II shows how the latencies vary with different sizes of
the read-write set. The maximum latency is the c2e latency.
This is time consuming because the endorsement peer runs
the chaincode to generate the read-write set. The larger the
number of entries read or written, the longer it takes to execute
the chaincode. The other two latencies, i.e. e2o and o2v are
not as sensitive to the size of the read-write set. The total
latency however is quite significant for a read-write set size
of 2 million entries.
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Fig. 5: Read and write latencies for varying sizes of key-value
store

B. Chaincode Key Value Store Size

This experiment is designed to answer the question: Does
the size of the key value store affect read and write latencies
of chaincode data? To answer this question, we pre-populated
chain code data ranging from 1000 entries to 1 Billion entries
in different experiments. We recorded transaction latencies for
individual reads and writes over 1000 separate transactions.
The reads and writes were uniformly spread across the entire
data set. The experiment was repeated for different key-value
store sizes.

Figure 5a shows that reads are relatively unaffected by
the key-value store size up until 100 Million entries2. This
shows that peers use a highly optimized database for key-value
lookups and updates. At 1 Billion, the read latency almost
doubles and 53.8 GB of the disk is utilized by the KV-store
(as opposed to only 5.17 GB at 100M). The increase in latency
is due to many of the reads include fetching key-value entries
from disk. Figure 5b shows the write latencies, which do not
show any consistent pattern. Write latencies are dominated
mainly by network latencies involved in completing the three

2Note that read latencies are in milliseconds while write latencies are in
seconds.
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stages of the transaction lifecycle3.

C. Chaincode and Event Payload Sizes

Each chaincode function can be passed a payload during
invocation. The payload is processed by the function, which
might in turn generate an event. Events are generated by
chaincode functions that clients can attach listeners to. The
goal of this experiment is to study the effect of payload sizes
on the transaction latency. These experiments are set up to
measure the latencies for two cases: (a) Varying payloads are
sent to a chaincode function that uses the payloads as values
to be inserted in the chaincode KV store, and (b) In addition
to updating the KV store, the payload is passed back in an
event generated from the chaincode. The payload is passed
from the peer to the client listener.

Payload Size(MB) c2e(s) e2o(s) o2v(s) Total latency(s)
1 0.114 0.101 0.221 0.436

10 0.902 0.981 1.627 3.510
20 1.791 1.958 3.045 6.794
30 2.747 2.899 4.936 10.582
40 6.432 3.861 10.778 21.071

TABLE III: Transaction latency with variable sized chaincode
payloads

Payload Size(MB) c2e (s) e2o(s) o2v(s) Total latency(s)
1 0.132 0.149 0.296 0.577

10 1.092 1.454 2.442 4.988
20 2.117 2.896 4.585 9.598
30 5.323 4.335 10.497 20.155

TABLE IV: Transaction latency with variable sized event
payloads

Tables III and IV summarize the findings in both sets of
experiments. The results show that the transaction latencies
significantly increase with each 10MB increase in the payload
in both cases with most amount of time being spent in ordering
and committing the entry into the ledger.

D. Chaincode runtime overhead

Fabric runs each chaincode within a separate Docker
container [24]. Docker ensures isolation between different
chaincodes running on the same machine. When multiple
chaincodes are invoked concurrently, the peers run multiple
chaincodes within their respective chaincode containers. The
goal of this experiment is to quantify the runtime overhead
of the Docker container by comparing the latencies of the
chaincode running within Fabric versus running natively on
the same machine. This experiment uses sorting as a represen-
tation of a cpu-intensive task performed within the chaincode.
A chaincode function initializes a large array of 100 million
numbers in the descending order and subsequently sorts it
using the Quicksort algorithm. The same GoLang code is

3This experiment was run with different orderer settings to accommodate
the 1Billion data point, which took about 48 hours to populate. For the same
reason the write latencies for all the data points are slightly higher than actuals.

run on the natively on the same machine and latencies are
measured for that operation. The Docker container adds an
execution overhead of <3.1%.

E. Inter Chaincode Calls

Modularized real-world business logic often requires a
system of chaincodes to inter-operate and produce the desired
result. Each module within the application might be mapped
to an individual chaincode. Such inter-operation often requires
chaincodes to invoke methods within other chaincodes to
complete a transaction. In this set of experiments, we study
how multi-level invocation of chaincodes compares with a
single monolithic chaincode incorporating all the functions.
Experiments are conducted for invocation depths of 2, 3 and 4.
A depth of 1 indicates a client invoking a chaincode function.

Chaincodes
Call depth Single (sec) Multiple (sec) Overhead (%)

2 0.094 0.101 7.45
3 0.093 0.105 12.90
4 0.096 0.111 15.60

TABLE V: Inter-chaincode versus single chaincode transaction
latencies

For multi-chaincode invocations, the experiment generates a
transaction where a random key-value pair is generated by the
client and sent to the first level chaincode C1. Depending on
the call depth, this key-value pair is passed by chaincodes to
the last level chaincode which updates its state. All chaincode
invocations are treated as part of the same transaction on
the blockchain. Our experiment measures the latency of this
transaction. For the single chaincode scenario, all functions are
implemented within the same chaincode. The same functional-
ity is retained and the latency for this transaction is measured.
Table V shows the actual latencies measured for call depths
of 2, 3 and 4 in both scenarios. The chaincode to chaincode
scenario incurs an execution overhead between the range of
5.2% to 7.45% for each added level of call depth.

In the above experiments, all chaincodes were deployed on
the same channel. We also studied the latencies of chaincode
to chaincode invocation of depth 2 on the same channel and
compared it to one chaincode invoking another chaincode on
a different channel. We noticed that inter-channel invocations
did not add any additional overhead to the transaction latency.
The current version of Fabric supports only read calls across
channels and therefore we were able to only experiment with
inter-channel chaincode-to-chaincode read calls.

V. SCALABILITY EXPERIMENTS

The scalability experiments study the limits on the system.
In this section, we present results of experiments on scaling
the number of chaincodes, maximizing the number of chan-
nels and increasing the number of peers to represent large
consortiums on the blockchain network.
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Fig. 6: Scaling the number of chaincodes

A. Scaling chaincodes

Chaincodes encode business logic required to be executing
as part of the blockchain application, making changes to the
data (key-value state) stored within it. In this experiment,
we study how the number of chaincodes deployed affect the
throughput and latency of the system when all of them are
deployed on the same channel and all (or most) of them are
invoked at the same time by clients.

The experiment is setup with four peers using the hardware
setup mentioned in Section III-A. Two clients are used to
generate the input transactions to the system with a balanced
load across all the peers. The number of transactions is
increased to match the number of deployed chaincodes such
that for each data point, roughly one transaction is sent to each
deployed chaincode in the system. For example, when there
are 100 chaincodes in the system, we use an input send rate
of 100 transactions per second where each request is sent to
one chaincode. When each chaincode is invoked within the
same time window, the peer runs the chaincode and executes
the invoke function, thereby consuming resources on the peer
nodes.

Figure 6 shows the latency and throughput of the system
when the number of chaincodes deployed is the same as
the total transaction rate on the blockchain network. The
throughput almost matches the system throughput when a
single chaincode is deployed up until 786 tx/sec. When the
number of chaincodes exceeds 900 and the transaction rate
is above 900 tx/sec, we see a sharp increase in the latencies
and the throughput drops significantly. The maximum number
of chaincodes we were able to deploy with this setup was
1000, out of which only 903 could be successfully invoked
concurrently. Increasing the chaincode count at this point
caused a failure in transactions and timing out of the RPC
connection between client and peers.

B. Scaling channels

Channels in Fabric can be set up for confidentiality and
privacy of transactions amongst a smaller subset of transacting
parties within a large consortium. It allows several entities,
some of whom might be potential competitors, to co-exist on
the blockchain network. The chaincodes deployed on a channel
execute only on the concerned peers that are members of the
channel. Members also participate in advancing the blockchain
and therefore maintain a copy of the ledger. The ledger and
chaincodes are completely invisible to other members who are
not part of the channel.

In this experiment, the goal was to identify the maximum
number of channels that could be created with our hardware
setup as described in Section III-A. Two clients were used
to generate the input transaction load on the system. The
chaincodes are pre-instantiated with one chaincode per chan-
nel. All chaincodes are invoked in parallel by the client load.
For example, when there are 100 channels in the system, an
input send rate of 100 transactions per second will invoke all
the 100 chaincodes, by sending each transaction to a separate
chaincode.

The maximum number of channels that we were able to
create was 320. Figure 7 shows the throughput and latency of
the system when the number of channels deployed matches
the total input transaction rate on the blockchain network.
The throughput degrades ranging from 9% reduction at 100
tx/sec upto 52.8% degradation when the number of channels
is increased to 320, compared to the single channel scenario.
Latencies also correspondingly increase compared to the single
channel scenario (Figure 3).

C. Scaling peers

Peers are run by participating entities within the consortium.
For larger consortiums, considering each organization is a
partner, ideally each of them would run at least one peer
to contribute to the blockchain. In this set of experiments,
we study the effect on the performance of the system when
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Fig. 8: Scaling the number of peers

consortium sizes are large. We use AWS EC2 [19] dedicated
instances of type c4.2xlarge (8 vCPUs and 16 GB memory)
[18] as peers on the Fabric blockchain network.

We evaluate the latency and throughput for consortium sizes
of 4, 8, 12 and 16. The endorsement policy is set such that all
peers within the consortium setup on a single channel have to
endorse a transaction for it to be included on the blockchain.

Figure 8 shows the throughput and latencies for transactions
with different send rates up to 1400 tx/sec. For a lower trans-
action rate of 200 tx/sec, with default configuration parameters
set, the largest consortium setting yields the lowest throughput
and incurs the highest latencies. This gap significantly widens
for higher throughput rates of 1400 where the 16-peer setup
achieves about half of the throughput as the 4-peer setup.

VI. RELATED WORK

The Caliper tool [26] was developed by Huawei Technolo-
gies to measure the throughput and latency of permissioned
blockchain platforms. We have adapted Caliper to measure
the latency and throughput results described in this paper.

The modifications that we made to Caliper to tailor it to our
requirements is explained in Section III-B. Blockbench [17] is
proposed as a framework for benchmarking the performance
of private blockchain platforms. However it focuses on the
performance comparison of Fabric (v 0.6), Ethereum and
Parity, where Ethereum and Parity are not private blockchain
platforms. The micro-benchmarks proposed are generic and
do not evaluate the intricacies of Fabric. To the best of
our knowledge, ours is the first work that is focussed on
characterizing the performance and scalability of the produc-
tion grade Hyperledger Fabric 1.0 platform. A recent paper
from the Hyperledger Fabric group [16], contains a couple of
experimental results. The paper claims to achieve a throughput
of 3000 tx/sec, on the Fabric 1.1-preview version, which has
one significant improvement over v1.0 that we use in our
experiments. Commitment of transactions in the 1.1-preview
version is done in parallel where all the available cores can be
used to leverage speedy commitment of transactions, which
most likely results in the higher throughput results that are
reported. In Fabric v1.0, the commitment phase uses only
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one CPU core where requests are queued up and wait to get
committed on the ledger.
Other work in this field has focussed mainly on improving the
performance and scaling issues of public blockchains such as
Bitcoin and Ethereum and other cryptocurrencies, where the
issues involved are quite different from permissioned platforms
[20]–[23], [25].

VII. CONCLUSIONS

In this paper, we presented a structured experimental ap-
proach to characterize the performance and scalability of the
Hyperledger Fabric 1.0 blockchain platform. The throughput
of the system is linear for reads. For writes, it is almost
linear below a transaction rate of 1000 tx/sec (for our setup),
after which the throughput degrades and transaction latencies
increase significantly. We showed that the throughput of the
system is sensitive to the orderer settings and therefore can
be further improved if the system can dynamically tune these
settings based on the total experienced load on the system.
Reducing the number of endorsements needed (a chaincode
setting) also provides an improvement in throughput and
latencies at higher loads. While this may help performance,
it lowers the security of the system by weakening its anti-
collusion properties. It might however be acceptable in certain
scenarios where higher levels of trust already exist; for exam-
ple, an already trusted intermediary running peers on behalf
of its enterprise clients or a single organization hosting peers
for its subsidiaries.

A significant drawback in Fabric 1.0 is that the committing
peer does not process transactions in parallel, failing to take
advantage of multiple vCPUs present on the system and there-
fore becoming a significant bottleneck. We believe this issue
is addressed and fixed in the latest release of Fabric (v1.1)
[16]. This release should therefore provide an improvement in
throughput.

Through our micro-benchmarking experiments, we showed
that transaction latencies are significantly affected by the
read-write set size of the transaction (Section IV-A), and
chaincode and event payload sizes (Section IV-C), both of
which are application-specific. At this time there is inadequate
understanding of what typical blockchain application run-
times, data access patterns or payloads might be, but having an
understanding of the latencies involved can guide application
designers to make informed choices. We also show that read
and write latencies are relatively unaffected by the size of the
data stored in the chaincode (Section IV-B). This implies that
designers can have considerable flexibility while choosing data
set sizes. Modularity is another design consideration while
mapping application modules to chaincodes. Through our
micro-benchmark, we showed that inter-chaincode calls add
an additional execution overhead of 5.2% to 7.45% for each
added level of call depth (Section IV-E). Therefore, application
designers need to make the right tradeoff between modularity
and speed. Finally the scalability experiments (Section V)
demonstrated good scaling characteristics for chaincodes and
small number of channels, which is expected to be the most

common case usage scenario. While large consortiums can be
built, the endorsements per chaincode should be limited to a
smaller subset of peers, with an eye on performance.
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